MPRI - Lecture 2-36-1 “Proof of Programs” Project 2020-2021

Solving Takuzu puzzles

In this project, we are interested in specifying and proving correct a program that solves the so-called
Takuzu puzzles (https://en.wikipedia.org/wiki/Takuzu). The rules of these puzzles are detailed below.

This project is to be carried out using the Why3 tool (version 1.3.3), in combination with automated
provers (Alt-Ergo 2.3, CVC4 1.7 and Z3 4.8). You can use other automatic provers or versions if you want,
if they are freely available and recognized by Why3. You may use Coq for discharging particular proof obli-
gations, although the project can be completed without it. The installation procedure may be found on the
web page of the course at URL https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
install.html.

The project must be done individually—team work is not allowed. In order to obtain a grade for the
project, you must send an e-mail to Claude.Marche@inria.fr and Jean-Marie.Madiot@inria. fr, no later
than Thursday, February 25th, 2021 at 22:00 UTC+1. This e-mail should be entitled “MPRI project 2-
36-17, be signed with your name, and have as attachment an archive (zip or tar.gz) storing the following
items:

e The canvas file takuzu.mlw completed by yours.

e The content of the sub-directory takuzu generated by Why3. In particular, this directory should
contain session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

o A PDF document named report.pdf in which you report on your work. The contents of this report
counts for at least half of your grade for the project.

The report must be written in French or English, and should typically consist of 3 to 6 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you added should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following implemen-
tation: [give pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It captures
the fact that [rephrase the contract in natural language]. To prove this code correct, I need to add extra an-
notations [give the loop invariants, etc.] capturing that [rephrase the annotations in english]. This invariant
is initially true because [explain]. It is preserved at each iteration because [explain]. The post-condition
then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g. why a loop invariant is initially true, why it
is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of your
Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In case you
are not able to fully complete a definition or a proof, you should carefully describe which parts are missing
and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work: how
easy or how hard was it, what were the major difficulties, was there any unexpected result, and any other
information that you think is important to consider for the evaluation of the work you did.

1 Description of Takuzu puzzles

Solving a Takuzu puzzle aims at filling a grid with zeros and ones. There exists variations on the size of
such a grid, here we fix the size of considered grids to 8 x 8. An initial configuration of the puzzle is a grid

https://en.wikipedia.org/wiki/Takuzu
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/install.html
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/install.html

filled with a few zeros and ones, and the goal is to fill in the remaining empty cells, while respecting the
three rules below:

e in any line or column, there should never be three consecutive identical numbers;
e in each line and column, there is the same number of zeros and ones (that is four of each);
e there should be no two identical lines, and no two identical columns

An example of puzzle is as follows

0
1
0
0
0
1)1
1 1
1 010
and the unique solution of it is
1|1 1100110
Oj1jo0jo0of111]0]1
1oy 1|1]0]0]11]0
Oj1 |01 |1|10]0]]1
1101|011]1]0]|0
Oj1]0[11O011]1]0
OjO0j1]O[1L|O1]1
11011]0(0]|1|0]1

2 Appetizers: Basic Functions on Arrays

We start gently with a few basic functions on arrays for checking properties similar to the three different
rules above. For this section, we simply consider functions on arrays of integers.

2.1 Check for Consecutive Zeros

As a starter, we consider a question similar to the first Takuzu rule: we want to check whether, in an array
of integers, there exists three consecutive zeros. To start with, we want to formalize that expected property
as a predicate of the form

predicate no_3_consecutive_zeros (a:array int)

which is supposed to evaluate to true when there is no three consecutives zeros. To define it, we consider
an auxiliary predicate no_3_consecutive_zeros_sub taking a bound [/ and expresses that there is no three
consecutive zeros in the sub-array of a between indices O (included) and ! (excluded).

1. Fill in the definitions of predicates no_3_consecutive_zeros_sub and no_3_consecutive_zeros in
the file takuzu.mlw.

takuzu.mlw

We then consider a first implementation, that iterates on the array and checks for each index i if ai],
ali + 1] and a[i 4 2] are null.

2. Infile takuzu.mlw, complete the definition of the function no_3_consecutive_zeros_version_1 that
implements that first version. Provide the necessary loop invariants to prove this function correct.

To avoid accessing thrice each array elements, we now consider a second version which records in local
variables the last two elements visited.

3. Complete the definition of the function no_3_consecutive_zeros_version_2 that implements that
second version. Provide the necessary loop invariants to prove this function correct.

A third algorithm is to avoid to record the values of the last two elements visited, but just to record how
many zeros where recently visited.

4. Complete the definition of the function no_3_consecutive_zeros_version_3 that implements that
third version. Provide the necessary loop invariants to prove this function correct.

2.2 Checking for Same Number of Zeros and Ones

We now consider the second Takuzu rule, that requires to have the same number of zeros and ones in each
line and column. Again, we simply consider array of integers for now. To start with, we want to define a
general logic function that gives the number of occurrences of a given element f in an abstract sequence,
the latter being represented by a function and two bounds:

function num_occ (e:int) (f:int -> int) (i j :int) : int
(**x number of ‘l‘, ‘I <= 1 < j‘, such that ‘f 1’ is equal to ‘e’ x)

Notice that the first index ¢ is counted but not the last index j. A canvas of its definition is given in the file
takuzu.mlw under the form of a ghost recursive function.
5. Complete the definition of the function num_occ.

6. Pose an appropriate post-condition on the auxiliary program function count_number_of so as to
make the other program function same_number_of_zeros_and_ones provable.

7. Prove the auxiliary program function count_number_of.

2.3 Checking for identical sub-arrays

Considering the third Takuzu rule now, we’d like to specify and implement a function that will check if a
given array has identical sub-arrays. The expected behaviour is formalized using the following predicate.

predicate identical_sub_arrays (a:array int) (ol 02 1l:int)
(*x [identical_sub_arrays a ol o2 1] is true whenever the sub-arrays
[alol..01+1-1]] and [a[o02..02+1-1]] are point-wise identical x)

8. Complete the definition of the predicate identical_sub_arrays.

9. Prove the program function check_identical_sub_arrays correct by adding appropriate annota-
tions.

takuzu.mlw

3 Specification of Takuzu puzzles

For representation of Takuzu grids, we choose arrays of size 64 of values of the following type

type elem = Empty | Zero | One
type takuzu_grid = array elem

The value Empty is naturally used to represent partially filled grids. The numbering of cells is as follows.

O 1| 213]4|5]|6/|7

8| 9| 10| 11| 12| 13| 14| 15

16| 17| 18| 19| 20| 21| 22| 23

24| 25| 26| 27| 28| 29| 30| 31

32| 33| 34| 35| 36| 37| 38| 39

40| 41| 42| 43| 44| 45| 46| 47

48| 49| 50| 51| 52| 53| 54| 55

56| 57| 58| 59| 60| 61| 62| 63

To ease the usage of that numbering, the file takuzu.mlw introduces a few definitions. The function
column_start_index gives, for a given cell number, the number of the cell at the top of the same col-
umn. The function row_start_index gives the number of the cell at the left of the same row.

To denote either a column or a row, we use the term chunk. Such a chunk can be represented by a
pair of integers (start,incr) where start is the number of the first cell (on the left for rows and at the top
for columns) and incr is the increment need for going to the next cell of the chunk (1 for rows and 8 for
columns). For simplicity the function acc is introduced: (acc s i k) denotes the k-th cell of the chunk
(s,4) (for 0 < k < 7). The predicate valid_chunk is also given, to define what are the valid pairs defining
chunks.

We now consider each of the three Takuzu rules independently. We are going to write auxiliary functions
that check if these rules are valid for a given chunk. Beware that we consider now grids that can be partially
filled. That means that from now on, when we say that some rule is valid for some chunk, it ignores the
empty cells in the sense that the empty cells of the chunk can still be filled with values for satisfying the
given rule.

3.1 The Main Search Algorithm

The main algorithm we want to implement and prove proceeds by a kind of brute-force search, trying to
fill in each empty cells with a zero or a one, and checking whether the resulting grid is a solution. Yet,
to make such a brute-force algorithm practical, we want to proceed incrementally in the sense that we try
to fill empty cells in order, O to 63, but at each step we check that the rules are possibly satisfiable before
continuing. A pseudo-code for the algorithm is thus as follows

solve_aux (g:takuzu_grid) (n:int) (% we assume all cells 0..n—1 already filled x)
= if n=64 then return g (x search completed %) otherwise
depending in current value of g[n]:
— if non—empty
check if rules are satisfied for cell n, then solve_aux g (n+1)
— if empty
set g[n] to 0, check if rules are satisfied for cell n, and then
solve_aux g (n+1)
if the above check failed, or the recursive call to solve_aux did not find a
set g[n] to 1, check if rules are satisfied for cell n, and then

takuzu.mlw

solve_aux g (n+1)
if the above check failed, or the recursive call did not find any solution

solve_grid (g:takuzu_grid) = solve_aux g 0

The algorithm thus amounts to check whether rules are satisfied but for a given cell only. This is why
we start with programming and proving three functions to check Takuzu rules for a given cell, or indeed for
a given chunk. A general thing about these functions is that whenever they detect a violation of a rule, then
they should raise a common exception Invalid.

3.2 First Takuzu Rule for Chunks

Checking the first Takuzu rule for a given chunk is formalized with the following predicate.

predicate no_3_consecutive_identical_elem (g:takuzu_grid) (start incr : int) (l:int) =
(** ‘no_3_consecutive_identical_elem g s i 1‘ is true whenever in the
chunk “(s,1i)* of grid ‘g‘, the first ‘l‘ elements do not violate
the first Takuzu rule x)

We remind that this predicate should ignore the empty cells : it should be false only if the given chunk
contains three consecutive zero or ones, but not if it contains three consecutive empty cells.

10. In file takuzu.mlw, complete the definition of the predicate no_3_consecutive_identical_elem.

The program function check_rule_1_for_chunk aims at checking Takuzu rule one for a chunk, with
an algorithm that ressembles the third algorithm of Section 2.1.

11. Provide appropriate loop invariants to prove this program.

3.3 Second Takuzu Rule for Chunks

We proceed similarly on the second rule: for a given chunk, we want to check that the number of zeros and
the number of ones does not exceed 4. The empty cells still do not count, naturally. The specifications and
the codes for this part should be inspired from Section 2.2.

12. Complete the ghost function num_occ and the program function count_number_of that counts the
number of a given element in a chunk.

13. Complete the predicate rule_2_for_chunk and the program function check_rule_2_for_chunk aim-
ing at checking the Takuzu rule 2 for a given chunk.

3.4 Third Takuzu Rule for Chunks

For that third rule, when we mean that two chunks are identical, we mean that they have all their cells
non-empty and identical. In other words, the check for rule 3 should never raise an invalidity exception
when one of the two chunks still contain empty cells.

Moreover, when we say that the rule 3 should be checked for a given chunk, we mean that we should
check that this chunk is not identical to any of the other chunks that goes in the same direction (columns or
TrOws).

14. Complete the predicate identical_chunks that must be true when two chunks (s1,1) and (s2,1) are
identical on their first | elements. Then prove the program check_identical_chunks.
15. Complete the program functions check_rule_3_for_column and check_rule_3_for_row.
Note: once the last two functions are completed, the code for your program is now complete, so you

may consider testing your code by running make tests. This should run the solver on a few grids, for each
of them a solution must be returned, in a fraction of seconds for each of them.

3.5 Checking Rules Satisfaction for a Given Cell

The next step is to code a function that checks whenever, for a given cell number, the Takuzu rules are
satisfied for its column and its row. Indeed we are interested in the following predicate.

predicate valid_up_to (g:takuzu_grid) (n:int)
(xx ‘valid_up_to g n‘ is true whenever all cells with number smaller
than ‘n‘ satisfy the Takuzu rules x*)

that states that the rules are satisfied for all cells smaller than the given n.

16. Complete the predicates rule_1_for_cell, rule_2_for_cell and rule_3_for_cell so has to make
the last predicate valid_up_to mean what it is supposed to mean.

17. Complete the program function check_at_cell that aims at checking valid_at_cell g n. As for
the previous rule checks, that function should raise the exception Invalid if any rule is violated.

The next function check_cell_change is quite similar to the previous function check_at_cell, the only
difference, as seen in its body, is that it first sets the content of the cell number n to the given element e. This
function is intended to be used incrementally, that is it assumes the rules were already checked for smaller
values of n. Notice how the already given pre-condition “valid_up_to (g[n<-Empty]) n” expresses that
rules were checked for values smaller than n, but when assuming the cell n is empty.

18. Complete the specifications of check_cell_change so as to prove all its verification conditions, ex-
cept the given assertion and the post-condition “valid_up_to g (n+1)”. Explain why proving the
assertion is difficult. Explain also why proving the post-condition, even assuming the assertion valid,

is difficult.

19. State an appropriate framing lemma before the definition of check_cell_change so as to prove the
assertion that remained unproved in the previous question. Without proving that lemma, explain
informally why it is correct.

20. State another framing-like lemma before the definition of check_cell_change so as to prove the
post-condition. Without proving that lemma, explain informally why it is correct.

3.6 Proving the Main Algorithm

The main algorithm is already implemented in the canvas file takuzu.mlw. To specify the expected behavior
of the solver, we introduce two extra predicates

predicate full_up_to (g:takuzu_grid) (n:int)
(xx ‘full_up_to g n* is true whenever all the cells lower than ‘n‘ are non-empty x)

predicate extends (gl:takuzu_grid) (g2:takuzu_grid) =
(xx ‘extends gl g2‘ is true when ‘g2‘ is an extension of ‘gl‘, that is all
non-empty cells of ‘gl‘ are non-empty in ‘g2‘ and with the same value. x)

The post-condition of the main algorithm solve is thus

let solve (g:takuzu_grid) : unit
ensures { full_up_to g 64 }
ensures { extends (old g) g }
ensures { valid_up_to g 64 }

meaning that the final value of grid g is full, contains the initial grid, and of course satisfy the Takuzu rules.

21. Prove the main algorithm. You may identify that function check_cell_change may need some extra
post-conditions. You may also identify some extra lemmas to be proved. In your report, try to explain
incrementally which verification conditions you solve and how you proved them. In case you add
post-conditions to check_cell_change, you have to prove them valid. The extra lemmas you add
may be left unproved, if you carefully explain why you believe they are valid.

Note that for the question above, it is recommended that you write your report at the same time you do
the proof, so has to carefully explain the steps you had to follow.

4 Extra Questions, Discussions, Conclusions

22. As a bonus, you may prove the lemmas left unproved above. Do not forget to explain how you proved
these lemmas.

23. Our algorithm is proved correct in a sense that when it returns a grid, it is guaranteed to be a valid
one. Another desirable property would be its completeness: when the given grid is solvable, our
algorithm should return a solution. Without trying to do it in practice, discuss what should be done
to extend the current specifications of the code. What would be the main difficulties for proving that
completeness property?

24. As a conclusion of your report, comment on the difficulties you faced during proving this Takuzu
solver program.

	Description of Takuzu puzzles
	Appetizers: Basic Functions on Arrays
	Check for Consecutive Zeros
	Checking for Same Number of Zeros and Ones
	Checking for identical sub-arrays

	Specification of Takuzu puzzles
	The Main Search Algorithm
	First Takuzu Rule for Chunks
	Second Takuzu Rule for Chunks
	Third Takuzu Rule for Chunks
	Checking Rules Satisfaction for a Given Cell
	Proving the Main Algorithm

	Extra Questions, Discussions, Conclusions

