MPRI - Lecture 2-36-1 “Proof of Programs” Project 2022-2023

Convex Hull of a Set of Points

For a given finite set of points in the plane, its convex
hull is the smallest polyhedron that contains all the points °
(https://en.wikipedia.org/wiki/Convex_hull). Fig- / \
ure 1 shows an example of such a convex hull, where ° °
the polyhedron is characterized by an ordered sequence of
points, represented by the arrows. The goal of this project °
is to formally specity, implement, and formally prove cor- °
rect an algorithm for computing convex hulls. °

This project is to be carried out using the Why3 tool °
(version 1.5.x), in combination with automated provers ° .

(Alt-Ergo 2.4.x, CVC4 1.8, CVCS5 1.0 and Z3 4.8.x or \\ /
higher). You can use other automatic provers or versions .

if you want, if they are freely available and recognized by
Why3. You may use Coq for discharging particular proof
obligations, although the project can be completed with-
out it. The installation procedure may be found on the
web page of the course at URL https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
install.html.

The project must be done individually: team work is not allowed. In order to obtain a grade for
the project, you must send an e-mail to Claude.Marche@inria.fr and Jean-Marie.Madiot@inria.fr,
no later than Thursday, February 23rd, 2023 at 23:00 UTC+1. This e-mail should be entitled “MPRI
project 2-36-1", be signed with your name, and have as attachment an archive (zip or tar.gz) storing
the following items:

Figure 1: The convex Hull of a set of points

e The proposed canvas file convex_hull.mlw completed by yours.

e The content of the sub-directory convex_hull generated by Why3. In particular, this directory
should contain session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

e A PDF document named report.pdf in which you report on your work. The contents of this
report counts for at least half of your grade for the project.

The report must be written in French or English, and should typically consist of 3 to 6 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you added should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following imple-
mentation: [give pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It
captures the fact that [rephrase the contract in natural language]. To prove this code correct, I need to
add extra annotations [give the loop invariants, etc.] capturing that [rephrase the annotations in english].
This invariant is initially true because [explain]. It is preserved at each iteration because [explain]. The
post-condition then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g., why a loop invariant is initially true, why
it is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of

https://en.wikipedia.org/wiki/Convex_hull
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/install.html
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/install.html
convex_hull.mlw
convex_hull

your Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In
case you are not able to fully complete a definition or a proof, you should carefully describe which parts
are missing and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work:
how easy or how hard it was, what were the major difficulties, was there any unexpected result, and any
other information that you think is important to consider for the evaluation of the work you did.

1 Formal Specifications of Points and Convex Hull

The proposed canvas file convex_hull.mlw already contains a module Point providing definitions for
the type pt for points, as records of two real numbers. It also contains the definition of the type pt_set
for sets of points, represented as arrays of points.

To start with, we want to be able to compute extremal points: points whose coordinates are minimal
or maximal in a given set. More precisely we want to compute the lowest-leftmost point: the one whose
y-coordinate is minimal, and the rightmost among all the points that have a minimal y-coordinate. For
that purpose the predicate is_lower_pt is provided: is_lower_pt((x1,y1), (x2,y2)) is true when either
y1 <ygory; =yzand 1 < xo.

1. Fill in the definition of the program function lowest_leftmost of module Point, that compute the
index of the lowest-leftmost point of a set.

2 Counterclockwise Triangles

b3
A key ingredient of this project is the notion of coun-

terclockwise triangles. The provided module CCW de-
fines a predicate ccw which, given three points p1, p2
and ps, captures the intuition that the triangle pipops

is oriented counterclockwise (and is not flat), as shown
[}

on Figure 2. A thesis developed in the book Axioms \ P2
and Hulls [1] (for reference only, there is no need to /
read any part of this book for the project) is that all the)

properties needed to reason about convex hulls may be n

abstracted away into five facts about the predicate ccw. Figure 2: Counterclockwise triangle pipaps
These facts are:

(Cyclic symmetry) if ccw(p1, pa, ps) then ccu(ps, ps, p1)-
(Antisymmetry) if ccw(p1, p2, p3) then not cew(pe, p1, p3).

(Non-degeneracy) if p1, p2, p3 are not colinear, then either ccw(p1, p2, p3) or cew(pe, p1, P3)-

(Interiority) if ccw(q, p1,p2), ccw(q, p2,p3) and ccw(q, p3, p1) then cew(py, p2, p3).

(Transitivity) assuming ccw(q1, g2, p1), ccw(qi, g2, p2) and ccw(q1, g2, p3) (that is, all points p1, p2, p3
are to the “left” of the segment ¢1, g2), if ccw(qe, p1, p2) and cew(qe, p2, p3), then cew(qe, p1, ps).
In other words, given two points ¢; and g, the binary relation z R y := ccw(ge, =, y) is transitive,
when considering points located to the left of the segment q;, g2.

The definition of the predicate ccw is provided, as well as the statement and the proof of each of the five
properties described above. These five properties allow us to abstract the reasoning about angles.

convex_hull.mlw

2.1 Points to the Left of a Segment

We now consider the specification, implementation and verification of a program that checks whether all
the points, from a given point set, are located to the left of the segment joining two particular points from
this point set.

2. Complete the definition of the predicate all_on_left(s, i, j) that states that all the points from the
point set s, distinct from s[i| and s[j|, are located to the left of the segment s]i], s[j].

3. Complete the definition of the program function check_all_on_left that decides whether
all_on_left(c,1,j) holds. Notice that it is on purpose that this function does not return a Boolean
but instead raises the exception Exit when the all_on_left predicate does not hold.

2.2 Checking Convex Hull

As already shown in Figure 1, a convex hull is represented as a sequence of points. To represent a
sequence, that we call indeed a path, a module Path is provided. A path in a set of points is in fact a
sequence of indices of points from this set. A path representing the convex hull should contain points of
the hull in counterclockwise order, without any repetition, as in Figure 1. Remark that any of the points
from the convex hull may be used as a starting point for the path.

4. Define a predicate is_convex_hull(s, p) that states that the path p is a convex hull of the point set
s. This definition should make use of the predicate all_on_left. Justify carefully in your report
why you pretend that your definition captures faithfully the notion of convex hull. For simplicity, to
avoid degenerated cases, you may assume that considered sets of points have a minimal number
of elements, say 2 or 3 (explain your choice in your report).

5. Complete the definition of the program function check_is_convex_hull that, given a set of points
and a path, decides whether the path describes the convex hull of the point set. This function must
return a Boolean value, and it should make use of the function check_all_on_left.

3 Computing Convex Hulls

The goal is to implement and prove an algorithm 3
for computing a convex hull of a given point set. 1
We focus on the gift wrapping algorithm, also |
known as Jarvis march (https://en.wikipedia. ° ° ?
org/wiki/Gift_wrapping_algorithm). The idea l

of this algorithm is to “wrap” around the set of 1
point, starting from the lowest-leftmost point, as i
illustrated in Figure 3. At each step, we com- * !
pute the next point that the wrapping will “touch”. d l
We find this point by enumerating the set of all i ° - f/
the points from the point set in order to deter- - g
mine the one that is maximal for the relation L
x Ry :=ccw(p, x,y), (recall that, by Knuth’s fifth 10

axiom, this relation is transitive) where p is the

last point from the path in construction, called the

pivot. The convex hull is completed when the next ~ Figure 3: First steps of the gift wrapping algorithm
point that we find is equal to the point that we
started with.

https://en.wikipedia.org/wiki/Gift_wrapping_algorithm
https://en.wikipedia.org/wiki/Gift_wrapping_algorithm

For simplicity, we rule out all degenerated cases. First, we assume that no three points are ever co-
linear. Moreover, we also assume there is a unique point with minimal y-coordinate. Two predicates
called no_colinear_triple and unique_minimal_y are provided for this purpose. They can be added in
the preconditions of your functions when needed.

3.1 Correctness of Jarvis Algorithm

A canvas for the code of the convex hull algorithm is provided. It consists of a main function called
jarvis and an auxiliary function called largest, which computes the maximal point for the relation R
defined above.

Again, note that the program never needs to make use of any kind of computation of angles: all
computations are performed in terms of the predicate ccw. Finding the appropriate specification for the
auxiliary function largest requires a good understanding of the proof of the main loop of the jarvis
function. We therefore advise to approach the problem as follows:

6. Prove the function jarvis_no_termination (a version ignoring termination), in the same time as
developing the appropriate specification for largest.

7. Prove correct the function largest.

Note that you may need to state auxiliary lemmas to prove the functions above. In such a case, do
not forget to explain these lemmas in your report, and how they are proved, e.g., using lemma functions.

3.2 Termination

As a last step, we focus on how to prove termination of the Jarvis algorithm. The canvas file provides
a function jarvis with the same implementation as jarvis_no_termination but without the diverges
clause in its contract. The purpose of this new program function is now to prove termination of the
algorithm. The idea of the proof is somehow simple: the number of elements in the computed path
cannot exceed the number of points in the given set. Yet, to prove that fact it is necessarily to invoke
some variation of the so-called pigeon hole principle saying that since the path does not contains any
repeated points, it cannot contain more elements than the set of points.

You are free to proceed on your own to prove the termination, but you may make use of the hint
provided by the ghost function inverse(l, f,v) which given a function f from the set of integers
{0,...,1 — 1} into itself, assuming f is injective, and given a value v, returns an index i such f(i) = v.
It thus somehow explicitate that f must also be surjective.

8. Prove the termination of the jarvis function. Any lemma or ghost function used must be proved
too, including the inverse function if you use it.

4 Conclusions

Don’t forget to end your report with a conclusion that summarizes your achievements, explain the issues
you couldn’t solve if any, and comment about what you learned when doing this project.

References

[1] Donald Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

	Formal Specifications of Points and Convex Hull
	Counterclockwise Triangles
	Points to the Left of a Segment
	Checking Convex Hull

	Computing Convex Hulls
	Correctness of Jarvis Algorithm
	Termination

	Conclusions

