
MPRI - Lecture 2-36-1 “Proof of Program” 2022-2023

Final exam, February 28, 2023

• Duration: 3 hours.

• Answers may be written in English or French.

• Please write your answers for Exercise 1 on a separate piece of paper.

• Lecture notes and personal notes are allowed. Mobile phones must be switched off.
Electronic notes are allowed, but all network connections must be switched off, and
the use of any electronic device must be restricted to reading notes: no typing, no using
proof-related software.

• There are 4 pages and 3 exercises. Exercise 1 is about verification using weakest preconditions.
Exercises 2 to 3 are about separation logic.

• Write your name, and page numbers under the form 1/7, 2/7, etc., on each piece of paper.

1 Counting Occurrences of Elements in an Array

In this exercise, we are interested in counting the occurrences of elements in an array. We start by
specifying a logic function occ which, given an element x, a function f and two integers i and j, denotes
the number of occurrences of x among f i, f (i+1), . . . , f (j-1). Notice than the first index i is
included in the count but not the last one j. It is defined as follows

let rec ghost function occ (x:int) (f:int Ñ int) (i j:int) : int

= if j <= i then 0 else (if f i = x then 1 else 0) + occ x f (i+1) j

Question 1.1. Which annotations (e.g. pre-conditions, invariants, etc.) should be given to the ghost
function above so as to be able to prove it safe and terminating? Justify informally (5 lines max) why
your annotations suffice.

The following program computes the number of occurrences in an array, with a while loop.

let count_occ (x:int) (a:array int) : int =

let ref n = 0 in let ref i = 0 in

while i < a.length do

if a[i] = x then n Ð n+1;

i Ð i + 1;

done;

n

Question 1.2. Which annotations should be given to the program above so as to be able to prove it safe
and terminating? Justify informally (10 lines max) why your annotations suffice.

Question 1.3. We now express the expected behavior of the program count_occ by adding the post-
condition result = occ x a.elts 0 a.length. Which extra annotations are needed to prove it? If you
need an additional lemma to achieve the proof, state it clearly and explain how it can be proved (20 lines
max).

We know consider the classical function for swapping two elements in an array as follows.

let swap (a:array int) (i j :int) : unit

requires { 0 <= i < j < a.length }

writes { a }

ensures { @ x:int. occ x (old a).elts 0 a.length = occ x a.elts 0 a.length }

= let tmp = a[i] in a[i] Ð a[j]; a[j] Ð tmp

Notice the specific post-condition expressing that the number of occurrences of elements in array a are
unchanged. Notice also that for simplicity we assume i < j.

Question 1.4. To achieve a proof of the post-condition of swap above, several lemmas should be proved
first. Identify what could be these lemmas. State them clearly with logic formulas, and explain why they
suffice to prove the post-condition. (20 lines max)

Question 1.5. Explain how the lemmas identified above can be proved correct. (20 lines max)

1

2 Separation Logic: heap predicates

We recall the definition of a few separation logic connectives:

𝐻1 ^̂ 𝐻2 ” 𝜆𝑚. 𝐻1 𝑚 ^ 𝐻2 𝑚 𝑙 ÞÑ 𝑣 ” 𝜆𝑚. 𝑚 “ tp𝑙, 𝑣qu ^ 𝑙 ‰ null x𝑃 y ” 𝜆𝑚. 𝑚 “ H ^ 𝑃

𝐻1 __ 𝐻2 ” 𝜆𝑚. 𝐻1 𝑚 _ 𝐻2 𝑚 𝐻1 ˚ 𝐻2 ” 𝜆𝑚. D𝑚1𝑚2.𝑚 “ 𝑚1 Z 𝑚2 ^ 𝐻1 𝑚1 ^ 𝐻2 𝑚2

DD𝑥.𝐻 ” 𝜆𝑚.D𝑥.𝐻𝑚 GC ” 𝜆𝑚. True 𝐻1´̊ 𝐻2 ” 𝜆𝑚. @𝑚1 p𝑚1 K 𝑚 ^ 𝐻1 𝑚1q ñ 𝐻2p𝑚1 Z 𝑚q

𝑝⇝ MlistSeg 𝑞 nil ” x𝑝 “ 𝑞y 𝑝⇝ MlistSeg 𝑞 p𝑥 :: 𝐿1q ” DD𝑝1. 𝑝 ÞÑ t|hd=𝑥; tl=𝑝1|u ˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿1

𝑝⇝ Mlist𝐿 ” 𝑝⇝ MlistSeg null𝐿 𝑙 ÞÑ ” DD𝑣. 𝑙 ÞÑ 𝑣

Question 2.1. For each of the following heap predicates, say how many unique heaps satisfy it, and give
examples of such heaps when applicable. When there are several examples, provide a minimum of two.

1. 1 ÞÑ 1 ˚ 2 ÞÑ 2

2. 1 ÞÑ 1 ˚ GC

3. 1 ÞÑ 1 ^̂ p2 ÞÑ 2 ˚ GCq

4. p2 ÞÑ 2 __ 3 ÞÑ 3q ˚ p3 ÞÑ 3 __ 4 ÞÑ 4q

5. 1 ÞÑ 1 ´̊ p2 ÞÑ 2 ˚ 1 ÞÑ 1q

6. 1 ÞÑ 1 ´̊ 2 ÞÑ 2

7. p1 ÞÑ 1 ´̊ 2 ÞÑ 2q ˚ 1 ÞÑ 1

8. 𝑝⇝ MlistSeg 𝑞 r1s

9. 𝑝⇝ MlistSeg 𝑞 r1; 2s ^̂ 𝑟 ⇝ MlistSeg 𝑠 r2; 1s

Question 2.2. Derive, from the usual rule for assignment, the triple:

tp𝑝 ÞÑ q ˚ p𝑝 ÞÑ 𝑣 ´̊ 𝑃 qu 𝑝 := 𝑣 t𝑃 u

Question 2.3. Show that entailment (1) below does not hold.

p𝑃 ˚ 𝑅q ^̂ p𝑄 ˚ 𝑅q Ź p𝑃 ^̂ 𝑄q ˚ 𝑅 (1)

Definition 1. A heap predicate 𝑃 is precise if, for all heap 𝑚, there is at most one sub-heap 𝑚1 Ď 𝑚
such that 𝑃𝑚1.

For example, 𝑙 ÞÑ 𝑣 is precise for all 𝑙 and 𝑣.

Question 2.4. Is 𝑙 ÞÑ precise? Is xTruey precise? Is xFalsey? Is DD𝑙. 𝑙 ÞÑ 𝑣? Is GC?

Question 2.5. Name a few other precise predicates, and then a few other non-precise predicates.

Question 2.6. Show that when 𝑃 and 𝑄 are precise, then 𝑃 ˚ 𝑄 is precise.

Question 2.7. Complete the affirmation: if 𝑃 Ź 𝑄 and ... is precise, then ... is precise. Justify.

Question 2.8. Show that entailment (1) holds when 𝑅 is precise.

Question 2.9. Show that for all 𝑝 and 𝐿, the predicate 𝑝⇝ Mlist 𝐿 is precise.

Question 2.10. Show that for all 𝑝, the predicate DD𝐿. 𝑝⇝ Mlist 𝐿 is precise.

2

3 Separation Logic: adjacency lists

Recall that list cells are records with mutable fields hd and tl:

type ’a cell = { mutable hd : ’a; mutable tl : ’a cell }

We desire a function mconcat : ’a cell cell -> ’a cell that returns a mutable list containing the
concatenation of all the mutable lists contained in its argument. In other words, it should have the
following specification:

@𝑝𝐿 t𝑝⇝ Mlistof Mlist 𝐿u mconcat 𝑝 t𝜆𝑝1.𝑝1 ⇝ Mlistpconcat 𝐿qu (2)

where concat nil ” nil and concat pX :: Lq ” X `̀ concat 𝐿, where 𝑋 is a list and 𝐿 is a list of lists, and
`̀ is the usual concatenation of two lists. To save up on memory, we want to make as few allocations as
possible.

Question 3.1. Give an implementation of mconcat that reuses the list cells of its argument so as to never
allocate any new cell. Prove that your implementation satisfies specification (2).

Consider graphs of the form 𝐺 “ p𝑉,𝐸q with a set 𝑉 of 𝑛 nodes of the form 𝑉 “ t0, 1, . . . , 𝑛 ´ 1u and a
set of edges 𝐸 Ď 𝑉 ˆ 𝑉 . We represent a graph by a record of its size 𝑛 and an array of (non-necessarily
sorted) mutable adjacency lists, i.e. p𝑖, 𝑗q P 𝐸 if 𝑗 is present in the list at index 𝑖.

type graph = { size : int; adj : int cell array }

For example, the graph 𝐺1 “ pt0, 1, 2, 3, 4u, tp0, 1q, p0, 3q, p1, 3q, p3, 1q, p3, 2q, p3, 3quq can be represented as:

let l0 = { hd = 3; tl = { hd = 1; tl = null } }

let l1 = { hd = 3; tl = null }

let l3 = { hd = 2; tl = { hd = 3; tl = { hd = 1; tl = null } } }

let g1 = { size = 5; adj = [| l0; l1; null; l3; null |] }

Question 3.2. Write a corresponding representation predicate 𝑔 ⇝ Graph𝐺.

Question 3.3. Is it precise, in the sense of Definition 1?

The relational composition of two sets of edges 𝐸1 and 𝐸2 on the same set of nodes 𝑉 is defined as
𝐸1 ˆ 𝐸2 ” tp𝑖, 𝑘q P 𝑉 2 | p𝑖, 𝑗q P 𝐸1 ^ p𝑗, 𝑘q P 𝐸2u. We would like to design a function of graph
composition graph_compose such that:

@𝑉 𝐸1 𝐸2 𝑔1 𝑔2 t𝑔1 ⇝ Graphp𝑉,𝐸1q ˚ 𝑔2 ⇝ Graphp𝑉,𝐸2qu

graph_compose 𝑔1 𝑔2
t𝜆𝑔, 𝑔1 ⇝ Graphp𝑉,𝐸1q ˚ 𝑔2 ⇝ Graphp𝑉,𝐸2q ˚ 𝑔 ⇝ Graphp𝑉,𝐸1 ˆ 𝐸2qu

(3)

A candidate function is:

let graph_compose g1 g2 =

assert (g1.size = g2.size);

{ size = g1.size;

adj = Array.map (fun p -> mconcat (mmap (fun j -> g2.adj.(j)) p)) g1.adj }

where mmap : (’a -> ’b) -> ’a cell -> ’b cell is a map function on mutable lists.

Question 3.4. Give an implementation and a specification of mmap so that the graph_compose function
behaves as expected (no proof required).

Question 3.5. Give a limitation that specification (3) is suffering from. Suggest two ways of dealing
with this problem.

Question 3.6. Give a sketch of the proof that graph_compose satisfies its specification.

Recall the rule for the parallel composition of two terms e1 and e2 (written e1 ||| e2), running in parallel
on different threads:

t𝑃1u e1 t𝜆 .𝑄1u t𝑃2u e2 t𝜆 .𝑄2u

t𝑃1 ˚ 𝑃2u e1 ||| e2 t𝜆 .𝑄1 ˚ 𝑄2u

Consider now the following function, where all_threads_busy () returns an unknown Boolean:

3

let rec par_iter (f : ’a -> unit) (p : ’a array) (i j : int) =

if i >= j or all_threads_busy () then

for k = i to j do f p.(k) done

else

let m = (i + j) / 2 in

par_iter f p i m |||

par_iter f p (m + 1) j

Question 3.7. Specify the function par_iter, so that it can be used on the array of adjacency lists for
graphs. Give a sketch of a proof of correctness (if you make an induction, at least provide its statement,
but it is not necessary to write out details for all steps).

We define the following function, which modifies the head values of a mutable list according to a function
of type ’a -> ’b, effectively transforming, in place, p from an ’a cell to a ’b cell. Note that during
the execution, p is ill-typed if ’a and ’b are incompatible.

let rec mlist_replace (f : ’a -> ’b) (p : ’a cell) =

if p <> null then begin

p.hd <- f p.hd;

mlist_replace f p.tl

end

Question 3.8. Give a specification of mlist_replace in terms of Mlistof.

Question 3.9. Prove that mlist_replace satisfies its specification (give a good amount of details).

We want to run a parallel graph algorithm that manipulates graphs but requires to have weights and
integer markings on each edge. The function make_edge is provided, to help modify adjacency lists
accordingly. Because we are under tight memory constraints, we add those in-place by using the function
mlist_replace.

type edge = { target : int; weight : int; mutable mark : int }

let make_edge j = { target = j; weight = Random.int 2; mark = 0 }

let augment_graph g = Array.iter (mlist_replace make_edge) g.adj

Note that after a call to augment_graph g, the original pointer g points to an object no longer fitting the
type graph. It instead represents an “augmented” graph 𝐺̂ “ p𝑉, 𝐸̂q where is the set of weighted marked
edges, and 𝐸̂ Ď 𝑉 2 ˆ N2.

Question 3.10. Give a new representation predicate of an augmented graph 𝑔 ⇝ AugmentedGraph 𝐺̂.

Question 3.11. Knowing a specification for Random.int can be: @𝑛, tx𝑛 ą 0yu Random.int 𝑛 t𝜆𝑖.x0 ď 𝑖 ă

𝑛yu, and give a specification for the function augment_graph, together with a proof sketch of correctness.

4

	Counting Occurrences of Elements in an Array
	Separation Logic: heap predicates
	Separation Logic: adjacency lists

