
Basics of Deductive Program Verification

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

December 6th, 2022



Preliminaries

Very first question
Lectures in English or in French?

I Schedule on the Web page https:

//marche.gitlabpages.inria.fr/lecture-deductive-verif/

I Lectures 1,2,3,4: Claude Marché
I Lectures 5,6,7,8: Jean-Marie Madiot
I Evaluation:

I project P using the Why3 tool (http://why3.lri.fr)
I final exam E : date to decide
I final mark = if P ≥ E then (E + P)/2 else (3E + P)/4

I Project:
I provided at the beginning of January
I due date around mid-February

I Internships (stages)

https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
http://why3.lri.fr


Preliminaries

Very first question
Lectures in English or in French?

I Schedule on the Web page https:

//marche.gitlabpages.inria.fr/lecture-deductive-verif/

I Lectures 1,2,3,4: Claude Marché
I Lectures 5,6,7,8: Jean-Marie Madiot

I Evaluation:
I project P using the Why3 tool (http://why3.lri.fr)
I final exam E : date to decide
I final mark = if P ≥ E then (E + P)/2 else (3E + P)/4

I Project:
I provided at the beginning of January
I due date around mid-February

I Internships (stages)

https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
http://why3.lri.fr


Preliminaries

Very first question
Lectures in English or in French?

I Schedule on the Web page https:

//marche.gitlabpages.inria.fr/lecture-deductive-verif/

I Lectures 1,2,3,4: Claude Marché
I Lectures 5,6,7,8: Jean-Marie Madiot
I Evaluation:

I project P using the Why3 tool (http://why3.lri.fr)
I final exam E : date to decide
I final mark = if P ≥ E then (E + P)/2 else (3E + P)/4

I Project:
I provided at the beginning of January
I due date around mid-February

I Internships (stages)

https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
http://why3.lri.fr


Preliminaries

Very first question
Lectures in English or in French?

I Schedule on the Web page https:

//marche.gitlabpages.inria.fr/lecture-deductive-verif/

I Lectures 1,2,3,4: Claude Marché
I Lectures 5,6,7,8: Jean-Marie Madiot
I Evaluation:

I project P using the Why3 tool (http://why3.lri.fr)
I final exam E : date to decide
I final mark = if P ≥ E then (E + P)/2 else (3E + P)/4

I Project:
I provided at the beginning of January
I due date around mid-February

I Internships (stages)

https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
https://marche.gitlabpages.inria.fr/lecture-deductive-verif/
http://why3.lri.fr


Outline
Introduction, Short History

Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers

Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercises



General Objectives

Ultimate Goal
Verify that software is free of bugs

Famous software failures:
http://www.cs.tau.ac.il/~nachumd/horror.html

This lecture
Computer-assisted approaches for verifying that

a software conforms to a specification

http://www.cs.tau.ac.il/~nachumd/horror.html


Some general approaches to Verification

Static analysis, Algorithmic Verification
I model checking (automata-based models)
I abstract interpretation (domain-specific model, e.g.

numerical)

Deductive verification
I formal models using expressive logics
I verification = computer-assisted mathematical proof



Some general approaches to Verification

Refinement
I Formal models
I Code derived from model, correct by construction



A long time before success

Computer-assisted verification is an old idea
I Turing, 1948
I Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
I Importance of the increase of performance of computers

A first success story:
I Paris metro line 14, using Atelier B (1998, refinement

approach)



Other Famous Success Stories

I Flight control software of A380: Astree verifies absence of
run-time errors (2005, abstract interpretation)
http://www.astree.ens.fr/

I Microsoft’s hypervisor: using Microsoft’s VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

More recently: verification of PikeOS

I Certified C compiler, developed using the Coq proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
http://compcert.inria.fr/

I L4.verified micro-kernel, using tools on top of Isabelle/HOL
proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/l4.verified/

http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/vcc/
http://compcert.inria.fr/
http://www.ertos.nicta.com.au/research/l4.verified/


Other Success Stories at Industry

I Frama-C
I EDF: abstract interpretation
I Airbus: deductive verification

I Spark/Ada: Verification of Ada programs
https://www.adacore.com/industries

Remark
The two above use Why3 internally

https://www.adacore.com/industries


Outline
Introduction, Short History

Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers

Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercises



Proposition logic in a nutshell

I Syntax:

ϕ ::= ⊥ | > | A,B (atoms)
| ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
| ϕ→ ϕ | ϕ↔ ϕ

I Semantics, models: truth tables

ϕ is satisfiable if it has a model
ϕ is valid if true in all models

(equivalently ¬ϕ is not satisfiable)

SAT is decidable SAT solvers

Demo with Why3
$ why3 ide propositional.mlw

Notice that Why3 indeed queries solvers for satisfiability of ¬ϕ

propositional.mlw


Focus on the “Tools” menu of Why3



First-order logic in a nutshell
I Syntax:

ϕ ::= · · ·
| P(t , . . . , t) (predicates)
| ∀x . ϕ | ∃x . ϕ

t ::= x variables
| f (t , . . . , t) (function symbols)

I Semantics: models must interpret variables
I Satisfiability undecidable, but still semi-decidable: there

exists complete systems of deduction rules (sequent
calculus, natural deduction, superposition calculus)

I Examples of solvers: E, Spass, Vampire
Implement refutationally complete procedure:

if they answer ’unsat’ then formula is unsatisfiable

Demo with Why3
first-order.mlw

Notice that Why3 logic is typed, and application is curryied

first-order.mlw


Logic Theories

I Theory = set of formulas (called theorems) closed by
logical consequence

I Axiomatic Theory = set of formulas generated by axioms
(or axiom schemas)

I Consistent Theory

for no P, P and ¬P are both theorems
equivalently: ’false’ is not a theorem
equivalently: the theory has models

I Consistent Axiomatization
’false’ is not derivable



Theory of Equality

∀x . x = x

∀x , y . x = y → y = x

∀x , y , z. x = y ∧ y = z → x = z

(congruence) for all function symbols f of arity k :

∀x1, y1 . . . , xk , yk . x1 = y1 ∧ · · · ∧ xk = yk →
f (x1, . . . , xk ) = f (y1, . . . , yk )

and for all predicates p of arity k :

∀x1, y1 . . . , xk , yk . x1 = y1 ∧ · · · ∧ xk = yk →
p(x1, . . . , xk )→ p(y1, . . . , yk )



Theory of Equality, Continued

∀x . x = x

∀x , y . x = y → y = x

∀x , y , z. x = y ∧ y = z → x = z

(congruence) . . .

I General first-order deduction bad in such a case 
dedicated methods
I paramodulation
I congruence closure (for quantifier-free fragment)

I SMT solvers (Alt-Ergo, CVC4, Z3) implement dedicated
(semi-)decision procedures

Demo with Why3
equality.mlw

equality.mlw


Theories Continued

Theory of a given model
= formulas true in this model

I Central example: theory of linear integer arithmetic, i.e.
formulas using + and ≤
I First-order theory is known to be decidable (Presburger)
I SMT solvers typically implement a procedure for the

existential fragment

I Also: theory of (non-linear) real arithmetic is decidable
(Tarski)



Non-linear Integer Arithmetic

(a.k.a. Peano Arithmetic)

First-Order Integer Arithmetic
All valid first-order formulas on integers with +, × and ≤

I This theory is not even semi-decidable
I SMT solvers implement incomplete satisfiability checks:

if solver answers ’unsat’ then it is unsatisfiable

Demo with Why3
arith.mlw

arith.mlw


Digression about Non-linear Integer Arithmetic

Representation Theorem (Gödel)
Every recursive function f is representable by a predicate ϕf
such that

ϕf (x1, . . . , xk , y)

is true if and only if
y = f (x1, . . . , xk )

First incompleteness Theorem (Gödel)
That theory is not recursively axiomatizable



Summary of prover limitations

I Superposition solvers (E, Spass, )
I do not support well theories except equality
I do quite well with quantifiers

I SMT solvers (Alt-Ergo, CVC4, Z3)
I several theories are built-in
I weaker with quantifiers

I None support reasoning by induction



Outline
Introduction, Short History

Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers

Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercises



IMP language

IMP language
A very basic imperative programming language
I only global variables
I only integer values for expressions
I basic statements:

I assignment x <- e
I sequence s1; s2
I conditionals if e then s1 else s2
I loops while e do s
I no-op skip



Formal Contracts

General form of a program:

Contract
I precondition: expresses what is assumed before running

the program
I post-condition: expresses what is supposed to hold when

program exits

Demo with Why3
contracts.mlw

contracts.mlw


Hoare triples

I Hoare triple : notation {P}s{Q}
I P : formula called the precondition
I Q : formula called the postcondition

Intended meaning
{P}s{Q} is true if and only if:
when the program s is executed in any state satisfying P, then
(if execution terminates) its resulting state satisfies Q

This is a Partial Correctness: we say nothing if s does not
terminate



Examples

Examples of valid triples for partial correctness:
I {x = 1}x <- x + 2{x = 3}
I {x = y}x <- x + y{x = 2 ∗ y}
I {∃v . x = 4 ∗ v}x <- x + 42{∃w . x = 2 ∗ w}
I {true}while 1 do skip{false}



Running Example

Three global variables n, count, and sum

count <- 0; sum <- 1;

while sum <= n do

count <- count + 1; sum <- sum + 2 * count + 1

What does this program compute?
(assuming input is n and output is count)

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

See file imp_isqrt.mlw



Running Example

Three global variables n, count, and sum

count <- 0; sum <- 1;

while sum <= n do

count <- count + 1; sum <- sum + 2 * count + 1

What does this program compute?
(assuming input is n and output is count)

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

See file imp_isqrt.mlw



Running Example

Three global variables n, count, and sum

count <- 0; sum <- 1;

while sum <= n do

count <- count + 1; sum <- sum + 2 * count + 1

What does this program compute?
(assuming input is n and output is count)

Informal specification:
I at the end of execution of this program, count contains the

square root of n, rounded downward
I e.g. for n=42, the final value of count is 6.

See file imp_isqrt.mlw



Hoare logic as an Axiomatic Semantics

Original Hoare logic [∼ 1970]
Axiomatic Semantics of programs

Set of inference rules producing triples

{P}skip{P}

{P[x ← e]}x <- e{P}

{P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

I Notation P[x ← e] : replace all occurrences of program
variable x by e in P.



Hoare Logic, continued

Frame rule:
{P}s{Q}

{P ∧ R}s{Q ∧ R}
with R a formula where no variables assigned in s occur

Consequence rule:

{P ′}s{Q′} |= P → P ′ |= Q′ → Q
{P}s{Q}

I Example: proof of

{x = 1}x <- x + 2{x = 3}



Proof of the example

{x + 2 = 3}x <- x + 2{x = 3}
|= x = 1→ x + 2 = 3
|= x = 3→ x = 3

{x = 1}x <- x + 2{x = 3}



Hoare Logic, continued

Rules for if and while :

{P ∧ e}s1{Q} {P ∧ ¬e}s2{Q}
{P}if e then s1 else s2{Q}

{I ∧ e}s{I}
{I}while e do s{I ∧ ¬e}

I is called a loop invariant



Informal justification of the while rule

{I ∧ e}s{I}
{I}while e do s{I ∧ ¬e}

I invariant initially valid
I ∧ e condition assumed true

s execution of loop body
I invariant re-established

I ∧ e condition assumed true
s execution of loop body
I invariant re-established
... any number of iterations
I invariant re-established

I ∧ ¬e loop exits when condition false



Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0} ISQRT {count2 ≤ n ∧ n < (count + 1)2}

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning
Finding an adequate loop invariant is a major difficulty



Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0} ISQRT {count2 ≤ n ∧ n < (count + 1)2}

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning
Finding an adequate loop invariant is a major difficulty



Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0} ISQRT {count2 ≤ n ∧ n < (count + 1)2}

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning
Finding an adequate loop invariant is a major difficulty



Example: isqrt(42)

Exercise: prove of the triple

{n ≥ 0} ISQRT {count2 ≤ n ∧ n < (count + 1)2}

Could we do that by hand?

Back to demo: file imp_isqrt.mlw

Warning
Finding an adequate loop invariant is a major difficulty



Beyond Axiomatic Semantics

I Operational Semantics

I Semantic Validity of Hoare Triples
I Hoare logic as correct deduction rules



Beyond Axiomatic Semantics

I Operational Semantics
I Semantic Validity of Hoare Triples

I Hoare logic as correct deduction rules



Beyond Axiomatic Semantics

I Operational Semantics
I Semantic Validity of Hoare Triples
I Hoare logic as correct deduction rules



Operational semantics

[Plotkin 1981, structural operational semantics (SOS)]

I we use a standard small-step semantics
I program state: describes content of global variables at a

given time. It is a finite map Σ associating to each variable
x its current value denoted Σ(x).

I Value of an expression e in some state Σ:
I denoted JeKΣ

I always defined, by the following recursive equations:

JnKΣ = n
JxKΣ = Σ(x)

Je1 op e2KΣ = Je1KΣ JopK Je2KΣ

I JopK natural semantic of operator op on integers (with
relational operators returning 0 for false and 6= 0 for true).



Semantics of statements

Semantics of statements: defined by judgment

Σ, s  Σ′, s′

meaning: in state Σ, executing one step of statement s leads to
the state Σ′ and the remaining statement to execute is s′.
The semantics is defined by the following rules.

Σ, x <- e Σ{x ← JeKΣ}, skip

Σ, s1 Σ′, s′1
Σ, (s1; s2) Σ′, (s′1; s2)

Σ, (skip; s) Σ, s



Semantics of statements, continued

JeKΣ 6= 0
Σ, if e then s1 else s2 Σ, s1

JeKΣ = 0
Σ, if e then s1 else s2 Σ, s2

JeKΣ 6= 0
Σ, while e do s Σ, (s; while e do s)

JeKΣ = 0
Σ, while e do s Σ, skip



Execution of programs

I  : a binary relation over pairs (state,statement)
I transitive closure :  +

I reflexive-transitive closure :  ∗

In other words:
Σ, s ∗ Σ′, s′

means that statement s, in state Σ, reaches state Σ′ with
remaining statement s′ after executing some finite number of
steps.

Running example:

{n = 42, count =?, sum =?}, ISQRT  ∗

{n = 42, count = 6, sum = 49}, skip



Execution and termination

I any statement except skip can execute in any state
I the statement skip alone represents the final step of

execution of a program
I there is no possible runtime error.

Definition
Execution of statement s in state Σ terminates if there is a state
Σ′ such that Σ, s ∗Σ′, skip

I since there are no possible runtime errors, s does not
terminate means that s diverges (i.e. executes infinitely).



Semantics of formulas

I JpKΣ,V denotes the semantics of formula p in program state
Σ and mapping V of logic variables to integers

I defined recursively, e.g.

Jp1 ∧ p2KΣ,V =

{
> if Jp1KΣ,V = > and Jp2KΣ,V = >
⊥

J∀v .eKΣ,V = > if for all n. JeKΣ,V[v←n] = >
JvKΣ,V = V(v)
JxKΣ,V = Σ(x)

Notations:
I Σ |= p : the formula p is valid in Σ i.e. JpKΣ,∅ is >
I |= p : formula JpKΣ,∅ holds in all states Σ.



Soundness

Definition (Partial correctness)
Hoare triple {P}s{Q} is said valid if:
for any states Σ,Σ′, if
I Σ, s ∗Σ′, skip and
I Σ |= P

then Σ′ |= Q

Theorem (Soundness of Hoare logic)
The set of rules is correct: any derivable triple is valid.

This is proved by induction on the derivation tree of the
considered triple.
For each rule: assuming that the triples in premises are valid,
we show that the triple in conclusion is valid too.



Digression: Completeness of Hoare Logic
Two major difficulties for proving a program
I guess the appropriate intermediate formulas (for

sequence, for the loop invariant)
I prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is relatively complete: if the logic
language is expressive enough, then any valid triple {P}s{Q}
can be derived using the rules.

[Cook, 1978] “Expressive enough”: representability of any
recursive function
Yet, this does not provide an effective recipe to discover
suitable loop invariants (see also the theory of abstract
interpretation [Cousot, 1990])



Digression: Completeness of Hoare Logic
Two major difficulties for proving a program
I guess the appropriate intermediate formulas (for

sequence, for the loop invariant)
I prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is relatively complete: if the logic
language is expressive enough, then any valid triple {P}s{Q}
can be derived using the rules.

[Cook, 1978] “Expressive enough”: representability of any
recursive function
Yet, this does not provide an effective recipe to discover
suitable loop invariants (see also the theory of abstract
interpretation [Cousot, 1990])



Digression: Completeness of Hoare Logic
Two major difficulties for proving a program
I guess the appropriate intermediate formulas (for

sequence, for the loop invariant)
I prove the logical premises of consequence rule

Theoretical question: completeness. Are all valid triples
derivable from the rules?

Theorem (Relative Completeness of Hoare logic)
The set of rules of Hoare logic is relatively complete: if the logic
language is expressive enough, then any valid triple {P}s{Q}
can be derived using the rules.

[Cook, 1978] “Expressive enough”: representability of any
recursive function
Yet, this does not provide an effective recipe to discover
suitable loop invariants (see also the theory of abstract
interpretation [Cousot, 1990])



Annotated Programs

Goal
Add automation to the Hoare logic approach

We augment IMP with explicit loop invariants

while e invariant I do s



Weakest liberal precondition

[Dijkstra 1975]

Function WLP(s,Q) :
I s is a statement
I Q is a formula
I returns a formula

It should return the minimal precondition P that validates the
triple {P}s{Q}



Definition of WLP(s,Q)

Recursive definition:

WLP(skip,Q) = Q
WLP(x <- e,Q) = Q[x ← e]
WLP(s1; s2,Q) = WLP(s1,WLP(s2,Q))

WLP(if e then s1 else s2,Q) =
(e→WLP(s1,Q)) ∧ (¬e→WLP(s2,Q))



Definition of WLP(s,Q), continued

WLP(while e invariant I do s,Q) =
I ∧ (invariant true initially)
∀v1, . . . , vk .

(((e ∧ I)→WLP(s, I)) (invariant preserved)
∧((¬e ∧ I)→ Q))[wi ← vi ] (invariant implies post)

where w1, . . . ,wk is the set of assigned variables in statement s
and v1, . . . , vk are fresh logic variables



Examples

WLP(x <- x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y <- y − 2,even(y)) ≡
even(y)∧
∀v , ((v > 0 ∧ even(v))→ even(v − 2))
∧((v ≤ 0 ∧ even(v))→ even(v))



Examples

WLP(x <- x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y <- y − 2,even(y)) ≡

even(y)∧
∀v , ((v > 0 ∧ even(v))→ even(v − 2))
∧((v ≤ 0 ∧ even(v))→ even(v))



Examples

WLP(x <- x + y , x = 2y) ≡ x + y = 2y

WLP(while y > 0 invariant even(y) do y <- y − 2,even(y)) ≡
even(y)∧
∀v , ((v > 0 ∧ even(v))→ even(v − 2))
∧((v ≤ 0 ∧ even(v))→ even(v))



Soundness

Theorem (Soundness)
For all statement s and formula Q, {WLP(s,Q)}s{Q} is valid.

Proof by induction on the structure of statement s.

Consequence
For proving that a triple {P}s{Q} is valid, it suffices to prove the
formula P →WLP(s,Q).

This is basically the goal that Why3 produces



Outline
Introduction, Short History

Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers

Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercises



Beyond IMP and classical Hoare Logic

Extended language
I more data types
I logic variables: local and immutable
I labels in specifications

Handle termination issues:
I prove properties on non-terminating programs
I prove termination when wanted

Prepare for adding later:
I run-time errors (how to prove their absence)
I local mutable variables, functions
I complex data types



Extended Syntax: Generalities

I We want a few basic data types : int, bool, real, unit
I No difference between expressions and statements

anymore

Basically we consider
I A purely functional language (ML-like)
I with global mutable variables

very restricted notion of modification of program states



Base Data Types, Operators, Terms

I unit type: type unit, only one constant ()

I Booleans: type bool, constants True,False, operators and,
or, not

I integers: type int, operators +,−,× (no division)
I reals: type real, operators +,−,× (no division)
I Comparisons of integers or reals, returning a boolean
I “if-expression”: written if b then t1 else t2

t ::= val (values, i.e. constants)
| v (logic variables)
| x (program variables)
| t op t (binary operations)
| if t then t else t (if-expression)



Local logic variables

We extend the syntax of terms by

t ::= let v = t in t

Example: approximated cosine

let cos_x =

let y = x*x in

1.0 - 0.5 * y + 0.04166666 * y * y

in

...



Practical Notes

I Theorem provers (inc. Alt-Ergo, CVC4, Z3) typically
support such a typed logic

I may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas
when needed (e.g. transformation of if-expressions and/or
let-expressions into equivalent formulas)



Syntax: Formulas

It is (typed) first-order logic, as in previous lecture, but also with
addition of local binding:

p ::= t (boolean term)
| p ∧ p | p ∨ p | ¬p | p → p (connectives)
| ∀v : τ, p | ∃v : τ, p (quantification)
| let v = t in p (local binding)



Typing

I Types:
τ ::= int | real | bool | unit

I Typing judgment:
Γ ` t : τ

where Γ maps identifiers to types:
I either v : τ (logic variable, immutable)
I either x : mut τ (program variable, mutable)

Important
I a mutable variable is not a value (it is not a “reference”

value)
I as such, there is no “reference on a reference”
I no aliasing



Typing rules

Constants:

Γ ` n : int Γ ` r : real

Γ ` True : bool Γ ` False : bool

Variables:
v : τ ∈ Γ

Γ ` v : τ

x : mut τ ∈ Γ

Γ ` x : τ

Let binding:

Γ ` t1 : τ1 {v : τ1} · Γ ` t2 : τ2

Γ ` let v = t1 in t2 : τ2

I All terms have a base type (not a “reference”)
I In practice: Why3, unlike OCaml, does not require to write

!x for mutable variables



Formal Semantics: Terms and Formulas
Program states are augmented with a stack of local
(immutable) variables
I Σ: maps program variables to values (a map)
I π: maps logic variables to values (a stack)

JvalKΣ,π = val (values)
JxKΣ,π = Σ(x) if x : mut τ
JvKΣ,π = π(v) if v : τ

Jt1 op t2KΣ,π = Jt1KΣ,π JopK Jt2KΣ,π

Jlet v = t1 in t2KΣ,π = Jt2KΣ,({v=Jt1KΣ,π}·π)

Warning
Semantics is a partial function, it is not defined on ill-typed
formulas

Common notation for formulas
Σ, π |= ϕ means JϕKΣ,π = true



Type Soundness Property

Our logic language satisfies the following standard property of
purely functional language

Theorem (Type soundness)
Every well-typed terms and well-typed formulas have a
semantics

Proof: induction on the derivation tree of well-typing



Expressions: generalities

I Former statements of IMP are now expressions of type unit
Expressions may have Side Effects

I Statement skip is identified with ()

I The sequence is replaced by a local binding
I From now on, the condition of the if then else and the

while do in programs is a Boolean expression



Syntax

e ::= t (pure term)
| e op e (binary operation)
| x <- e (assignment)
| let v = e in e (local binding, immutable)
| if e then e else e (conditional)
| while e do e (loop)

I sequence e1; e2 : syntactic sugar for

let v = e1 in e2

when e1 has type unit and v not used in e2



Toy Examples

z <- if x >= y then x else y

let v = r in (r <- v + 42; v)

while (x <- x - 1; x > 0)

(* (--x > 0) in C *)

do ()

while (let v = x in x <- x - 1; v > 0)

(* (x-- > 0) in C *)

do ()



Typing Rules for Expressions
Assignment:

x : mut τ ∈ Γ Γ ` e : τ

Γ ` x <- e : unit

Let binding:

Γ ` e1 : τ1 {v : τ1} · Γ ` e2 : τ2

Γ ` let v = e1 in e2 : τ2

Conditional:

Γ ` c : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if c then e1 else e2 : τ

Loop:
Γ ` c : bool Γ ` e : unit

Γ ` while c do e : unit



Operational Semantics

Novelty w.r.t. IMP
Need to precise the order of evaluation: left to right
(e.g. x <- 0; ((x <- 1); 2) + x) = 2 or 3 ?)

I one-step execution has the form

Σ, π,e Σ′, π′,e′

π is the stack of local variables
I values do not reduce



Operational Semantics

I Assignment

Σ, π,e Σ′, π′,e′

Σ, π, x <- e Σ′, π′, x <- e′

Σ, π, x <- val Σ[x ← val], π, ()

I Let binding

Σ, π,e1 Σ′, π′,e′1
Σ, π, let v = e1 in e2 Σ′, π′, let v = e′1 in e2

Σ, π, let v = val in e Σ, {v = val} · π,e



Operational Semantics, Continued

I Binary operations

Σ, π,e1 Σ′, π′,e′1
Σ, π,e1 + e2 Σ′, π′,e′1 + e2

Σ, π,e2 Σ′, π′,e′2
Σ, π, val1 + e2 Σ′, π′, val1 + e′2

val = val1 + val2
Σ, π, val1 + val2 Σ, π, val



Operational Semantics, Continued

I Conditional

Σ, π, c Σ′, π′, c′

Σ, π, if c then e1 else e2 Σ′, π′, if c′ then e1 else e2

Σ, π, if True then e1 else e2 Σ, π,e1

Σ, π, if False then e1 else e2 Σ, π,e2

I Loop

Σ, π, while c do e 
Σ, π, if c then (e; while c do e) else ()



Context Rules versus Let Binding

Remark: most of the context rules can be avoided

I An equivalent operational semantics can be defined using
let v = . . . in . . . instead, e.g.:

v1, v2 fresh
Σ, π,e1 + e2 Σ, π, let v1 = e1 in let v2 = e2 in v1 + v2

I Thus, only the context rule for let is needed



Type Soundness

Theorem
Every well-typed expression evaluate to a value or execute
infinitely

Classical proof:
I type is preserved by reduction
I execution of well-typed expressions that are not values can

progress



Blocking Semantics: General Ideas

I add assertions in expressions
I failed assertions = “run-time errors”

First step: modify expression syntax with
I new expression: assertion
I adding loop invariant in loops

e ::= assert p (assertion)
| while e invariant I do e (annotated loop)



Toy Examples

z <- if x >= y then x else y ;

assert (z >= x /\ z >= y)

while (x <- x - 1; x > 0)

(* (--x > 0) in C *)

invariant x >= 0 do ();

assert (x = 0)

while (let v = x in x <- x - 1; v > 0)

(* (x-- > 0) in C *)

invariant x >= -1 do ();

assert (x = -1)



Blocking Semantics: Modified Rules

JPKΣ,π holds
Σ, π, assert P Σ, π, ()

JIKΣ,π holds
Σ, π, while c invariant I do e 

Σ, π, if c then (e; while c invariant I do e) else ()

Important remark
Execution blocks as soon as an invalid annotation is met

Definition (Safety of execution)
Execution of an expression in a given state is safe if it does not
block: either terminates on a value or runs infinitely.



Hoare triples: result value in post-conditions

New addition in the logic language:
I keyword result in post-conditions
I denotes the value of the expression executed

Example:

{ true }

if x >= y then x else y

{ result >= x /\ result >= y }



Hoare triples: Soundness

Definition (validity of a triple)
A triple {P}e{Q} is valid if for any state Σ, π satisfying P, e
executes safely in Σ, π, and if it terminates, the final state
satisfies Q

Difference with historical Hoare triples
Validity of a triple now implies safety of its execution, even if it
does not terminate



Weakest Preconditions Revisited

Goal:
I construct a new calculus WP(e,Q)

Expected property: in any state satisfying WP(e,Q),
I e is guaranteed to execute safely
I if it terminates, Q holds in the final state

Difference with historical WLP calculus
This calculus is no more “liberal”, the computed precondition
guarantees safety of execution, even if it does not terminate



New Weakest Precondition Calculus

Pure expressions (i.e. without side-effects, a.k.a. “terms”)

WP(t ,Q) = Q[result ← t ]

‘let’ binding

WP(let x = e1 in e2,Q) =
WP(e1, (WP(e2,Q)[x ← result ]))

Reminder: sequence is a particular case of ‘let’

WP((e1; e2),Q) = WP(e1,WP(e2,Q))



Weakest Preconditions, continued

I Assignment:

WP(x <- e,Q) = WP(e,Q[result ← (); x ← result ])

I Alternative:

WP(x <- e,Q) = WP(let v = e in x <- v ,Q)
WP(x <- t ,Q) = Q[result ← (); x ← t ])



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)

= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))

= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))

= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



WP: Exercise

WP(let v = x in (x <- x + 1; v), x > result) =?

WP(let v = x in (x <- x + 1; v), x > result)
= WP(x , (WP((x <- x + 1; v), x > result)[v ← result ]))

= WP(x , (WP(x <- x + 1,WP(v , x > result)))[v ← result ]))
= WP(x , (WP(x <- x + 1, x > v))[v ← result ]))
= WP(x , (x + 1 > v)[v ← result ]))

= WP(x , (x + 1 > result))

= x + 1 > x



Weakest Preconditions, continued

I Conditional

WP(if e1 then e2 else e3,Q) =
WP(e1, if result then WP(e2,Q) else WP(e3,Q))

I Alternative with let: (exercise!)



Weakest Preconditions, continued

I Assertion

WP(assert P,Q) = P ∧Q
= P ∧ (P → Q)

(second version useful in practice)
I While loop

WP(while c invariant I do e,Q) =
I∧
∀~v , (I →WP(c, if result then WP(e, I) else Q))[wi ← vi ]

where w1, . . . ,wk is the set of assigned variables in
expressions c and e and v1, . . . , vk are fresh logic variables



Soundness of WP

Lemma (Preservation by Reduction)
If Σ, π |= WP(e,Q) and Σ, π,e Σ′, π′,e′ then
Σ′, π′ |= WP(e′,Q)

Proof: predicate induction of .

Lemma (Progress)
If Σ, π |= WP(e,Q) and e is not a value then there exists
Σ′, π,e′ such that Σ, π,e Σ′, π′,e′

Proof: structural induction of e.

Corollary (Soundness)
If Σ, π |= WP(e,Q) then
I e executes safely in Σ, π.
I if execution terminates, Q holds in the final state



Outline
Introduction, Short History

Preliminary on Automated Deduction
Classical Propositional Logic
First-order logic
Logic Theories
Limitations of Automatic Provers

Introduction to Deductive Verification
Formal contracts
Hoare Logic
Dijkstra’s Weakest Preconditions

“Modern” Approach, Blocking Semantics
A ML-like Programming Language
Blocking Operational Semantics
Weakest Preconditions Revisited

Exercises



Exercise 1

Consider the following (inefficient) program for computing the
sum a + b.

x <- a; y <- b;

while y > 0 do

x <- x + 1; y <- y - 1

(Why3 file to fill in: imp_sum.mlw)
I Propose a post-condition stating that the final value of x is

the sum of the values of a and b
I Find an appropriate loop invariant
I Prove the program.



Exercise 2

The following program is one of the original examples of Floyd.

q <- 0; r <- x;

while r >= y do

r <- r - y; q <- q + 1

(Why3 file to fill in: imp_euclidean_div.mlw)
I Propose a formal precondition to express that x is

assumed non-negative, y is assumed positive, and a
formal post-condition expressing that q and r are
respectively the quotient and the remainder of the
Euclidean division of x by y .

I Find appropriate loop invariants and prove the correctness
of the program.



Exercise 3

Let’s assume given in the underlying logic the functions div2(x)
and mod2(x) which respectively return the division of x by 2 and
its remainder. The following program is supposed to compute,
in variable r , the power xn.

r <= 1; p <- x; e <- n;

while e > 0 do

if mod2(e) <> 0 then r <- r * p;

p <- p * p;

e <- div2(e);

(Why3 file to fill in: power_int.mlw)
I Assuming that the power function exists in the logic,

specify appropriate pre- and post-conditions for this
program.

I Find an appropriate loop invariant, and prove the program.



Exercise 4

The Fibonacci sequence is defined recursively by fib(0) = 0,
fib(1) = 1 and fib(n + 2) = fib(n + 1) + fib(n). The following
program is supposed to compute fib in linear time, the result
being stored in y .

y <- 0; x <- 1; i <- 0;

while i < n do

aux <- y; y <- x; x <- x + aux; i <- i + 1

I Assuming fib exists in the logic, specify appropriate pre-
and post-conditions.

I Prove the program.



Exercise (original Floyd rule for assignment)

1. Prove that the triple

{P}x <- e{∃v , e[x ← v ] = x ∧ P[x ← v ]}

is valid with respect to the operational semantics.
2. Show that the triple above can be proved using the rules of

Hoare logic.

Let us assume that we replace the standard Hoare rule for
assignment by the Floyd rule

{P}x <- e{∃v , e[x ← v ] = x ∧ P[x ← v ]}

3. Show that the triple {P[x ← e]}x <- e{P} can be proved
with the new set of rules.



Bibliography

Cook(1978) S. A. Cook. Soundness and completeness of an
axiom system for program verification. SIAM
Journal on Computing, 7(1):70–90, 1978. doi:
10.1137/0207005.

Cousot(1990) P. Cousot. Methods and logics for proving
programs. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages
841–993. North-Holland, 1990.

Dijkstra(1975) E. W. Dijkstra. Guarded commands,
nondeterminacy and formal derivation of
programs. Commun. ACM, 18:453–457, August
1975. ISSN 0001-0782. doi:
10.1145/360933.360975.



Bibliography

Floyd(1967) R. W. Floyd. Assigning meanings to programs. In
J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19–32,
Providence, Rhode Island, 1967. American
Mathematical Society.

Hoare(1969) C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12
(10):576–580 and 583, Oct. 1969.

Plotkin(2004) G. D. Plotkin. The origins of structural
operational semantics. Journal of Logic and
Algebraic Programming, 60–61:3–15, 2004. doi:
10.1016/j.jlap.2004.03.009.


	Introduction, Short History
	Preliminary on Automated Deduction
	Classical Propositional Logic
	First-order logic
	Logic Theories
	Limitations of Automatic Provers

	Introduction to Deductive Verification
	Formal contracts
	Hoare Logic
	Dijkstra's Weakest Preconditions

	``Modern'' Approach, Blocking Semantics
	A ML-like Programming Language
	Blocking Operational Semantics
	Weakest Preconditions Revisited

	Exercises

