Simple Syntax Extensions
 (labels, local mutable variables)

Functions and Function calls Proving Termination

More on Specification Languages and Application to Arrays

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

December 13th, 2022

Reminder of the last lecture

- Logics and automated prover capabilities
- propositional logic
- first-order logic
- theories: equality, integer arithmetic
- classical Floyd-Hoare logic
- very simple "IMP" programming language
- deduction rules for triples $\{$ Pre $\} s\{$ Post $\}$
- weakest liberal pre-conditions (Dijkstra)
- function $\operatorname{WLP}(s, Q)$ returning a logic formula
- soundness: if $P \rightarrow \operatorname{WLP}(s, Q)$ then triple $\{P\} s\{Q\}$ is valid
- main "creative" activity: discovering loop invariants

Reminder of the last lecture (continued)

- Modern programming language, ML-like
- more data types: int, bool, real, unit
- logic variables: local and immutable
- statement = expression of type unit
- Typing rules
- Formal operational semantics (small steps)
- type soundness: every typed program executes without blocking
- Blocking semantics and Weakest Preconditions:
- e executes safely in Σ, π if it does not block on an assertion or a loop invariant
- If $\Sigma, \pi \models \mathrm{WP}(e, Q)$ then e executes safely in Σ, π, and if it terminates then Q valid in the final state
- Exercices

Exercise 1

Consider the following (inefficient) program for computing the sum $a+b$

$$
\begin{aligned}
& x<-a ; y<-b ; \\
& \text { while } y>0 \text { do } \\
& \quad x<-x+1 ; y<-y-1
\end{aligned}
$$

(Why3 file to fill in: imp_sum.mlw)

- Propose a post-condition stating that the final value of x is the sum of the values of a and b
- Find an appropriate loop invariant
- Prove the program

Exercise 2

The following program is one of the original examples of Floyd

$$
\begin{aligned}
& q<-0 ; r<-x ; \\
& \text { while } r>=y \text { do } \\
& \quad r<-r-y ; q<-q+1
\end{aligned}
$$

(Why3 file to fill in: imp_euclidean_div.mlw)

- Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y
- Find appropriate loop invariants and prove the correctness of the program

This Lecture's Goals

- Extend that language:
- Labels for reasoning on the past, local mutable variables
- Sub-programs, function calls, modular reasoning
- Limitations of modular reasoning: subcontract weaknesses, non-inductive invariants
- Analyzing Termination
- prove termination when wanted
- (First-order) logic as a modeling language
- Definitions of new types, product types
- Definitions of functions, of predicates
- Axiomatizations
- Application:
- a bit of higher-order logic
- program on Arrays

Outline

Syntax extensions
Labels
Local Mutable Variables
Functions and Functions Calls

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Labels: motivation

Ability to refer to past values of variables
\{ true \}
let $v=r$ in ($r<-v+42$; v)
\{ r = r@Old + 42 / result = r@Old \}
\{ true \}
let tmp $=\mathrm{x}$ in $\mathrm{x}<-\mathrm{y}$; $\mathrm{y}<-\mathrm{tmp}$
\{ $x=y @ O l d /$ $\mathrm{y}=\mathrm{x@Old}\}$
SUM revisited:
\{ $y>=0$ \}
L:
while y > 0 do
invariant $\{x+y=x @ L+y @ L\}$
x <- x + 1; y <- y - 1
\{ $x=x @ O l d+y @ O l d / \backslash y=0\}$

Labels: Syntax and Typing

Add in syntax of terms:

$$
t::=x @ L \quad \text { (labeled variable access) }
$$

Add in syntax of expressions:

$$
e::=L: e \quad \text { (labeled expressions) }
$$

Typing:

- only mutable variables can be accessed through a label
- labels must be declared before use

Implicitly declared labels:

- Here, available in every formula
- Old, available everywhere except pre-conditions

Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- value of variable x at label L is denoted $\Sigma(x, L)$

New semantics of variables in terms:

$$
\begin{aligned}
\llbracket x \rrbracket_{\Sigma, \pi} & =\Sigma(x, \text { Here }) \\
\llbracket x @ L \rrbracket_{\Sigma, \pi} & =\Sigma(x, L)
\end{aligned}
$$

The operational semantics of expressions is modified as follows

$$
\begin{aligned}
\Sigma, \pi, x<- \text { val } & \rightsquigarrow \Sigma\{(x, \text { Here }) \leftarrow \text { val }\}, \pi,() \\
\Sigma, \pi, L: e & \rightsquigarrow \Sigma\{(x, L) \leftarrow \Sigma(x, \text { Here }) \mid x \text { any variable }\}, \pi, e
\end{aligned}
$$

Syntactic sugar: term $t @ L$

- attach label L to any variable of t that does not have an explicit label yet
- example: $(x+y @ K+2) @ L+x$ is $x @ L+y @ K+2+x @$ Here

New rules for WP

New rules for computing WP:

$$
\begin{aligned}
\mathrm{WP}(x<-t, Q) & =Q[x @ \text { Here } \leftarrow t @ \text { Here }] \\
\operatorname{WP}(L: e, Q) & =\operatorname{WP}(e, Q)[x @ L \leftarrow x @ \text { Here } \mid x \text { any variable }]
\end{aligned}
$$

Exercise:

$$
\mathrm{WP}(L: x<-x+42, x @ \text { Here }>x @ L)=?
$$

Example: computation of the GCD

(assuming notion of greatest common divisor exists in the logic)
Euclid's algorithm:

```
    requires { x >= 0 /\ y >= 0 }
    ensures { result = gcd(x@0ld,y@0ld) }
= L:
    while y > 0 do
        invariant { ? }
        let r = mod x y in }x<-y;y<-
    done;
    X
```

See file gcd_euclid_labels.mlw

Mutable Local Variables

We extend the syntax of expressions with

$$
e::=\text { let ref } i d=e \text { in } e
$$

(note: I use "ref" instead of "mut" because of Why3)
Example: isqrt revisited

```
val ref x : int
val ref res : int
res <- 0;
let ref sum = 1 in
while sum <= x do
    res <- res + 1; sum <- sum + 2 * res + 1
done
```


Operational Semantics

$$
\Sigma, \pi, e \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e^{\prime}
$$

π no longer contains just immutable variables

$$
\begin{gathered}
\frac{\Sigma, \pi, e_{1} \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e_{1}^{\prime}}{\Sigma, \pi \text {, let ref } x=e_{1} \text { in } e_{2} \rightsquigarrow \Sigma^{\prime}, \pi^{\prime} \text {, let ref } x=e_{1}^{\prime} \text { in } e_{2}} \\
\overline{\Sigma, \pi, \text { let ref } x=v \text { in } e \rightsquigarrow \Sigma, \pi\{(x, \text { Here }) \leftarrow v\}, e}
\end{gathered}
$$

Operational Semantics

$$
\Sigma, \pi, e \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e^{\prime}
$$

π no longer contains just immutable variables

$$
\begin{gathered}
\frac{\Sigma, \pi, e_{1} \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e_{1}^{\prime}}{\Sigma, \pi, \text { let ref } x=e_{1} \text { in } e_{2} \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, \text { let ref } x=e_{1}^{\prime} \text { in } e_{2}} \\
\overline{\Sigma, \pi, \text { let ref } x=v \text { in } e \rightsquigarrow \Sigma, \pi\{(x, \text { Here }) \leftarrow v\}, e} \\
\frac{x \text { local variable }}{\Sigma, \pi, x<-v \rightsquigarrow \Sigma, \pi\{(x, \text { Here }) \leftarrow v\}, e}
\end{gathered}
$$

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

$$
\begin{gathered}
\mathrm{WP}\left(\text { let ref } x=e_{1} \text { in } e_{2}, Q\right)=\mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q\right)[x \leftarrow \text { result }]\right) \\
\qquad \mathrm{WP}(x<-e, Q)=\mathrm{WP}(e, Q[x \leftarrow \text { result }]) \\
\mathrm{WP}(L: e, Q)=\mathrm{WP}(e, Q)[x @ L \leftarrow x @ \text { Here } \mid x \text { any variable }]
\end{gathered}
$$

Functions

Program structure:

$$
\begin{aligned}
\text { prog } & ::=\text { decl* } \\
\text { decl } & ::=\text { vardecl | fundecl } \\
\text { vardecl } & ::=\text { val ref id : basetype }
\end{aligned}
$$

Functions

Program structure:

$$
\begin{aligned}
\text { prog } & ::=\text { decl }^{*} \\
\text { decl } & ::=\text { vardecl } \mid \text { fundecl } \\
\text { vardecl } & ::=\text { val ref id : basetype } \\
\text { fundecl } & \left.:=\text { let id(}(\text { param, })^{*}\right): \text { basetype } \\
& \text { contract body e } \\
\text { param } & ::=\text { id }: \text { basetype } \\
\text { contract } & ::=\text { requires } t \text { writes }(i d,)^{*} \text { ensures } t
\end{aligned}
$$

Functions

Program structure:

$$
\begin{aligned}
& \text { prog }::=\text { decl }^{*} \\
& \text { decl }::=\text { vardecl } \mid \text { fundecl } \\
& \text { vardecl }:=\text { val ref id : basetype } \\
& \text { fundecl }\left.:=\text { let id(}(\text { param, })^{*}\right): \text { basetype } \\
& \text { contract body e } \\
& \text { param }::=\text { id : basetype } \\
& \text { contract }::=\text { requires } t \text { writes }(i d,)^{*} \text { ensures } t
\end{aligned}
$$

Function definition:

- Contract:
- pre-condition
- post-condition (label Old available)
- assigned variables: clause writes
- Body: expression

Example: isqrt

```
let isqrt(x:int): int
    requires x >= 0
    ensures result >= 0 /\
    sqr(result) <= x < sqr(result + 1)
body
    let ref res = 0 in
    let ref sum = 1 in
    while sum <= x do
        res <- res + 1;
    sum <- sum + 2 * res + 1
    done;
    res
```


Example using Old label

```
val ref res: int
let incr(x:int)
    requires true
    writes res
    ensures res = res@Old + x
body
    res <- res + x
```


Typing

Definition d of function f :
let $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau$
requires Pre
writes \vec{W}
ensures Post
body Body

Well-formed definitions:

$$
\begin{array}{lr}
\Gamma^{\prime}=\left\{x_{i}: \tau_{i} \mid 1 \leq i \leq n\right\} \cdot \Gamma & \vec{w} \subseteq \Gamma \\
\Gamma^{\prime} \vdash \text { Pre, Post : formula } & \Gamma^{\prime} \vdash \text { Body }: \tau \\
\vec{w}_{g} \subseteq \vec{w} \text { for each call } g & y \in \vec{w} \text { for each assign } y \\
\hline \Gamma \vdash d: w f &
\end{array}
$$

where 「 contains the global declarations

Typing: function calls

let $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau$ requires Pre writes \vec{W}
ensures Post
body Body

Well-typed function calls:

$$
\frac{\Gamma \vdash t_{i}: \tau_{i}}{\Gamma \vdash f\left(t_{1}, \ldots, t_{n}\right): \tau}
$$

Note: for simplicity the expressions t_{i} are assumed without side-effect (introduce extra let-expression if needed)

Operational Semantics of a Function Call

let $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau$
requires Pre
writes \vec{W}
ensures Post
body Body

$$
\frac{\pi=\left\{x_{i} \mapsto \llbracket t_{i} \rrbracket_{\Sigma, \pi}\right\} \quad \Sigma, \pi \models \text { Pre }}{\Sigma, \Pi, f\left(t_{1}, \ldots, t_{n}\right) \rightsquigarrow \Sigma,(\pi, \text { Post }) \cdot \Pi,(\text { Old }: \text { Body })}
$$

A call frame is a pair (π, Post) of a local stack and a formula
Π denotes a stack of call frames

Blocking Semantics

Execution blocks at call if pre-condition does not hold

Operational Semantics of returning from Function Call

We check that the post-condition holds at the end:

$$
\frac{\Sigma, \pi \models \text { Post }[\text { result } \leftarrow v]}{\Sigma,(\pi, \text { Post }) \cdot \Pi, v \rightsquigarrow \Sigma, \Pi, v}
$$

Blocking Semantics

Execution blocks at return if post-condition does not hold

WP Rule of Function Call

let $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau$
requires Pre
writes \vec{W}
ensures Post
body Body

$$
\begin{aligned}
& \mathrm{WP}\left(f\left(t_{1}, \ldots, t_{n}\right), Q\right)=\operatorname{Pre}\left[x_{i} \leftarrow t_{i}\right] \wedge \\
& \quad \forall \vec{v},\left(\operatorname{Post}\left[x_{i} \leftarrow t_{i}, w_{j} \leftarrow v_{j}, w_{j} @ O l d \leftarrow w_{j}\right] \rightarrow Q\left[w_{j} \leftarrow v_{j}\right]\right)
\end{aligned}
$$

Modular Proof Methodology

When calling function f, only the contract of f is visible, not its body

Example: isqrt(42)

Exercise: prove that $\{$ true $\}$ isqrt(42) $\{$ result $=6\}$ holds

```
val isqrt(x:int): int
    requires x >= 0
    writes (nothing)
    ensures result >= 0 ハ
        sqr(result) <= x < sqr(result + 1)
```

Abstraction of sub-programs

- Keyword val introduces a function with a contract but without body
- writes clause is mandatory in that case

Example: Incrementation

```
val ref res: int
val incr(x:int):unit
    writes res
    ensures res = res@0ld + x
```

Exercise: Prove that $\{r e s=6\} \operatorname{incr}(36)\{r e s=42\}$ holds

Soundness Theorem for a Complete Program

Assuming that for each function defined as

```
let }f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):
    requires Pre
    writes \vec{W}
    ensures Post
    body Body
```

we have

- variables assigned in Body belong to \vec{w},
$-\models$ Pre $\rightarrow \mathrm{WP}($ Body, Post $)\left[w_{i}\right.$ @Old $\left.\leftarrow w_{i}\right]$ holds,
then for any formula Q, any expression e, any configuration (Σ, π) :

$$
\text { if } \Sigma, \pi \models \mathrm{WP}(e, Q) \text { then execution of } \Sigma, \pi, e \text { is safe }
$$

Remark: (mutually) recursive functions are allowed

Limitations of modular reasoning

```
let f (x:int) : int
    ensures { result > x }
    = x+1
```

let g()$=$
let $a=f(0)$ in
assert $\{\mathrm{a}=1\}$

Subcontract weakness
A program can be safe (never blocks on annotations) and yet not being provable

Non-inductive loop invariants

```
let ref i = 0 in
while i < 2 do
    invariant { i <> 1 }
    i <- i+2;
done
```


Weakness of loop invariants

An invariant might be valid (the program is safe) and yet not be provably preserved by an arbitrary loop iteration

Inductive invariants

A loop invariant is called inductive when it can be proved initially valid and preserved by loop iterations

In other words: a loop invariant may be valid (in the sense of safety) and yet not being inductive

Limitations of modular reasoning (case of loops)

```
let ref i = 5 in
while i < 10 do
    invariant { i >= 0 }
    i <- i+2;
done;
assert { i = 11 }
```

Subcontract weakness (for loop)
A program can be safe (never blocks on annotations) and yet not being provable

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Termination

Goal

Prove that a program terminates (on all inputs satisfying the precondition)

Amounts to show that

- loops never execute infinitely many times
- (mutual) recursive calls cannot occur infinitely many times

Case of loops

Solution: annotate loops with loop variants

- a term that decreases at each iteration
- for some well-founded ordering \prec (i.e. there is no infinite sequence val $_{1} \succ \mathrm{val}_{2} \succ \mathrm{val}_{3} \succ \cdots$
- A typical ordering on integers:

$$
x \prec y=x<y \wedge 0 \leq y
$$

Syntax

New syntax construct:

$$
e::=\text { while } e \text { invariant } / \text { variant } t, \prec \text { do } e
$$

Example:

```
{ y >= 0 }
L:
while y > 0 do
    invariant { x + y = x@L + y@L }
    variant { y }
    x <- x + 1; y <- y - 1
{ x = x@Old + y@Old /\ y = 0 }
```


Operational semantics

$$
\begin{aligned}
& \llbracket!\rrbracket_{\Sigma, \pi} \text { holds } \\
& \hline \Sigma, \pi, \text { while } c \text { invariant } / \text { variant } t, \prec \text { do } e \rightsquigarrow \\
& \Sigma, \pi, L \text { if } c \\
& \text { then }(e \text {; assert } t \prec t @ L ; \\
& \text { while } c \text { invariant } / \text { variant } t, \prec \text { do } e) \\
& \text { else }()
\end{aligned}
$$

(new parts shown in red)

Weakest Precondition

$$
\begin{aligned}
& \text { WP }(\text { while } c \text { invariant } I \text { variant } t, \prec \text { do } e, Q)= \\
& \qquad \begin{array}{l}
I \wedge \\
\forall \vec{v},(I \rightarrow \mathrm{WP}(L: c, \text { if result then } \operatorname{WP}(e, I \wedge t \prec t @ L) \text { else } Q)) \\
\quad\left[w_{i} \leftarrow v_{i}\right]
\end{array}
\end{aligned}
$$

In practice with Why3

- presence of loop variants tells if one wants to prove termination or not
- warning issued if no variant given
- keyword diverges in contract for non-terminating functions
- default ordering determined from type of t

Examples

Exercise: find adequate variants

```
i <- 0;
while i <= 100
    variant ?
do i <- i+1
done;
```

while sum <= x
variant ?
do
res <- res + 1; sum <- sum + 2 * res + 1
done;

Examples

Exercise: find adequate variants

```
i <- 0;
while i <= 100
    variant ?
do i <- i+1
done;
```

while sum <= x
variant ?
do
res <- res + 1; sum <- sum + 2 * res + 1
done;

Solutions:
variant 100 - i
invariant res >= 0
variant x - sum

Recursive Functions: Termination

If a function is recursive, termination of call can be proved, provided that the function is annotated with a variant

```
let f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):\tau
    requires Pre
    variant var,\prec
    writes \vec{W}
    ensures Post
    body Body
```

WP for function call:

$$
\begin{aligned}
& \mathrm{WP}\left(f\left(t_{1}, \ldots, t_{n}\right), Q\right)=\operatorname{Pre}\left[x_{i} \leftarrow t_{i}\right] \wedge \operatorname{var}\left[x_{i} \leftarrow t_{i}\right] \prec \operatorname{var@Old} \wedge \\
& \quad \forall \vec{y},\left(\operatorname{Post}\left[x_{i} \leftarrow t_{i}\right]\left[w_{j} \leftarrow y_{j}\right]\left[w_{j} @ \text { Old } \leftarrow w_{j}\right] \rightarrow Q\left[w_{j} \leftarrow y_{j}\right]\right)
\end{aligned}
$$

Example of variant on a recursive function

let fib (x:int) : int
variant ?
body

$$
\text { if } x<=1 \text { then } 1 \text { else fib }(x-1)+\text { fib }(x-2)
$$

Example of variant on a recursive function

let fib (x:int) : int
variant ?
body

$$
\text { if } x<=1 \text { then } 1 \text { else fib }(x-1)+\text { fib }(x-2)
$$

Solution:
variant x

Case of mutual recursion

Assume two functions $f(\vec{x})$ and $g(\vec{y})$ that call each other

- each should be given its own variant v_{f} (resp. v_{g}) in their contract
- with the same well-founded ordering \prec

When f calls $g(\vec{t})$ the WP should include

$$
v_{g}[\vec{y} \leftarrow \vec{t}] \prec v_{f} @ O l d
$$

and symmetrically when g calls f

Home Work 1: McCarthy's 91 Function

$$
f 91(n)=\text { if } n \leq 100 \text { then } f 91(f 91(n+11)) \text { else } n-10
$$

Find adequate specifications

```
let f91(n:int): int
    requires ?
    variant ?
    writes ?
    ensures ?
body
    if n <= 100 then f91(f91(n + 11)) else n - 10
```

Use canvas file mccarthy.mlw

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs
(First-Order) Logic as a Modeling Language Axiomatic Definitions

Programs on Arrays

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL

Case of Why3, ACSL, Dafny: trade-off between

- expressiveness of specifications
- support by automated provers

Why3 Logic Language

- (First-order) logic, built-in arithmetic (integers and reals)
- Definitions à la ML
- logic (i.e. pure) functions, predicates
- structured types, pattern-matching (next lecture)
- type polymorphism à la ML
- higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (next lecture)

Important note

Logic functions and predicates are always totally defined

Definition of new Logic Symbols

Logic functions defined as
function $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau=e$
Predicate defined as
predicate $p\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right)=e$
where τ_{i}, τ are logic types (not references)

- No recursion allowed (yet)
- No side effects
- Defines total functions and predicates

Logic Symbols: Examples

```
function sqr(x:int) = x * x
predicate divides(x:int,y:int) =
    exists z:int. y = x * z
predicate is_prime(x:int) =
    x >= 2 /\
    forall y z:int. y >= 0 /\ z >= 0 /\ x = y*z ->
        y=1 \/ z=1
```


Definition of new logic types: Product Types

- Tuples types are built-in:
type pair = (int, int)
- Record types can be defined:

```
type point = { x:real; y:real }
```

Fields are immutable

- We allow let with pattern, e.g.

$$
\begin{aligned}
& \text { let }(a, b)=\ldots \text { in } \ldots \\
& \text { let }\{x=a ; y=b\}=\ldots \text { in } \ldots
\end{aligned}
$$

- Dot notation for records fields, e.g.
p.x + p.y

Axiomatic Definitions

Function and predicate declarations of the form
function $f\left(\tau, \ldots, \tau_{n}\right): \tau$
predicate $p\left(\tau, \ldots, \tau_{n}\right)$
together with axioms
axiom id : formula
specify that f (resp. p) is any symbol satisfying the axioms

Axiomatic Definitions

Example: division

```
function div(real,real):real
axiom mul_div:
    forall x,y. y<>0 -> div (x,y)*y = x
```


Axiomatic Definitions

Example: division

```
function div(real,real):real
axiom mul_div:
    forall x,y. y<>0 -> div (x,y)*y = x
```

Example: factorial

```
function fact(int):int
axiom fact0:
    fact(0) = 1
axiom factn:
    forall n:int. n >= 1 -> fact(n) = n * fact(n-1)
```

Exercise: axiomatize the GCD

Axiomatic Definitions

- Functions/predicates are typically underspecified \Rightarrow we can model partial functions in a logic of total functions

Axiomatic Definitions

- Functions/predicates are typically underspecified \Rightarrow we can model partial functions in a logic of total functions

Warning about soundness

Axioms may introduce inconsistencies
function div(real, real): real
axiom mul_div: forall x, y. $\operatorname{div}(x, y) * y=x$
implies $1=\operatorname{div}(1,0) * 0=0$

Underspecified Logic Functions and Run-time Errors

Error "Division by zero" can be modeled by an abstract function

```
val div_real(x:real,y:real):real
    requires y <> 0.0
    ensures result = div(x,y)
```


Reminder

Execution blocks when an invalid annotation is met

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Higher-order logic as a built-in theory

- type of maps: $\tau_{1} \rightarrow \tau_{2}$
- lambda-expressions: fun $x: \tau$-> t

Definition of selection function:
function select $(f: \alpha \rightarrow \beta)(x: \alpha): \beta=f x$
Definition of function update:
function store $(f: \alpha \rightarrow \beta)(x: \alpha)(v: \beta): \alpha \rightarrow \beta=$ fun $(y: \alpha)$-> if $x=y$ then v else $f y$

SMT (first-order) theory of "functional arrays"

lemma select_store_eq: forall $\mathrm{f}: \alpha->\beta, \mathrm{x}: \alpha, \mathrm{v}: \beta$.

$$
\text { select(store }(f, x, v), x)=v
$$

lemma select_store_neq: forall $\mathrm{f}: \alpha->\beta, \mathrm{x} \mathrm{y}: \alpha, \mathrm{v}: \beta$.

$$
x \text { <> y -> select(store }(f, x, v), y)=\operatorname{select}(f, y)
$$

Arrays as Mutable Variables of type "Map"

- Array variable: mutable variable of type int -> α
- In a program, the standard assignment operation

$$
a[i]<-e
$$

is interpreted as

$$
a<- \text { store }(a, i, e)
$$

Simple Example

```
val ref a: int -> int
```

let test()
writes a
ensures select $(a, 0)=13(* a[0]=13 *)$
body

$$
\begin{array}{ll}
a<-\operatorname{store}(a, 0,13) ; & (* a[0]<-13 *) \\
a<-\operatorname{store}(a, 1,42) & (* a[1]<-42 *)
\end{array}
$$

Exercise: prove this program

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
& \qquad \quad a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13))
\end{aligned}
$$

Simple Example

$$
\begin{gathered}
W P((a<-\operatorname{store}(a, 0,13) ; \\
a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
=\quad W P(a<-\operatorname{store}(a, 0,13) \\
W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13)))
\end{gathered}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13)
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13) \\
&= \operatorname{select}(\operatorname{store}(\operatorname{store}(a, 0,13), 1,42), 0)=13
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13) \\
&= \operatorname{select}(\operatorname{store}(\operatorname{store}(a, 0,13), 1,42), 0)=13 \\
&= \operatorname{select}(\operatorname{store}(a, 0,13), 0)=13
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13) \\
&= \operatorname{select}(\operatorname{store}(\operatorname{store}(a, 0,13), 1,42), 0)=13 \\
&= \operatorname{select}(\operatorname{store}(a, 0,13), 0)=13 \\
&= 13=13
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13) \\
&= \operatorname{select}(\operatorname{store}(\operatorname{store}(a, 0,13), 1,42), 0)=13 \\
&= \operatorname{select}(\operatorname{store}(a, 0,13), 0)=13 \\
&= 13=13 \\
&= \operatorname{true}
\end{aligned}
$$

Simple Example

$$
\begin{aligned}
& W P((a<-\operatorname{store}(a, 0,13) ; \\
&a<-\operatorname{store}(a, 1,42)), \operatorname{select}(a, 0)=13)) \\
&= W P(a<-\operatorname{store}(a, 0,13), \\
&W P(a<-\operatorname{store}(a, 1,42), \operatorname{select}(a, 0)=13))) \\
&= W P(a<-\operatorname{store}(a, 0,13) ; \operatorname{select}(\operatorname{store}(a, 1,42), 0)=13) \\
&= \operatorname{select}(\operatorname{store}(\operatorname{store}(a, 0,13), 1,42), 0)=13 \\
&= \operatorname{select}(\operatorname{store}(a, 0,13), 0)=13 \\
&= 13=13 \\
&= \text { true }
\end{aligned}
$$

Note how we use both lemmas select_store_eq and select_store_neq

Example: Swap

Permute the contents of cells i and j in an array a:

```
val ref a: int -> int
let swap(i:int,j:int)
    writes a
    ensures select(a,i) = select(a@0ld,j) /\
        select(a,j) = select(a@0ld,i) /\
        forall k:int. k <> i /\ k <> j ->
        select(a,k) = select(a@0ld,k)
body
    let tmp = select(a,i) in (* tmp <-a[i]*)
    a <- store(a,i,select(a,j)); (* a[i]<-a[j]*)
    a<- store(a,j,tmp) (*a[j]<-tmp *)
```


Arrays as Variables of Type "length \times map"

- Goal: model "out-of-bounds" run-time errors
- Array variable: mutable variable of type array α

```
type array 'a = { length : int; elts : int -> 'a}
val get (ref a:array 'a) (i:int) : 'a
    requires 0 <= i < a.length
    ensures result = select(a.elts,i)
val set (ref a:array 'a) (i:int) (v:'a) : unit
    requires 0 <= i < a.length
    writes a
    ensures a.length = a@0ld.length /\
    a.elts = store(a@0ld.elts,i,v)
```

- a[i] interpreted as a call to get (a,i)
- a[i] <- vinterpreted as a call to set(a,i,v)

Example: Swap again

```
val ref a: array int
let swap(i:int,j:int)
    requires 0 <= i < a.length /\ 0 <= j < a.length
    writes a
    ensures select(a.elts,i) = select(a@0ld.elts,j) ハ
        select(a.elts,j) = select(a@0ld.elts,i) /\
        forall k:int. 0 <= k < a.length /\ k <> i /\ k <> j ->
        select(a.elts,k) = select(a@0ld.elts,k)
body
    let tmp = get(a,i) in (* tmp <-a[i]*)
    set(a,i,get(a,j)); (* a[i]<-a[j]*)
    set(a,j,tmp) (* a[j]<-tmp *)
```


Note about Arrays in Why3

use array.Array
syntax: a.length, a[i], a[i]<-v

Example: swap

```
val a: array int
let swap (i:int) (j:int)
    requires { 0 <= i < a.length /\ 0 <= j < a.length }
    writes { a }
    ensures { a[i] = old a[j] /\ a[j] = old a[i]}
    ensures { forall k:int.
        0 <= k < a.length ハ\ k <> i /\ k <> j ->
        a[k] = old a[k] }
=
    let tmp = a[i] in a[i] <- a[j]; a[j] <- tmp
```


Exercises on Arrays

- Prove Swap by computing the WP
- Using WP, prove the program

```
let test()
    requires
        select(a,0) = 13 /\ select(a,1) = 42 /\
        select(a,2) = 64
    ensures
    select(a,0) = 64 /\ select (a,1) = 42 ハ
    select(a,2) = 13
body
    swap(0,2)
```


Exercise on Arrays: incrementation

- Specify, implement, and prove a program that increments by 1 all cells, between given indices i and j, of an array of reals

See file array_incr.mlw

Exercise: Search Algorithms

```
var a: array real
let search(n:int, v:real): int
    requires 0 <= n
    ensures { ? }
= ?
```

1. Formalize postcondition: if v occurs in a, between 0 and $n-1$, then result is an index where v occurs, otherwise result is set to -1
2. Implement and prove linear search: res <-1; for each i from 0 to $n-1$: if $a[i]=v$ then $r e s<-i$; return res

See file lin_search.mlw

Home Work 4: Binary Search

low $=0$; high $=n-1$;
while low \leq high:
let m be the middle of low and high
if $a[m]=v$ then return m
if $a[m]<v$ then continue search between m and high
if $a[m]>v$ then continue search between low and m
See file bin_search.mlw

Home Work 5: "for" loops

Syntax: for $i=e_{1}$ to e_{2} do e
Typing:

- i visible only in e, and is immutable
- e_{1} and e_{2} must be of type int, e must be of type unit

Operational semantics: (assuming e_{1} and e_{2} are values v_{1} and v_{2})

$$
\frac{v_{1}>v_{2}}{\Sigma, \pi, \text { for } i=v_{1} \text { to } v_{2} \text { do } e \rightsquigarrow \Sigma, \pi,()}
$$

$v_{1} \leq v_{2}$
Σ, π, for $i=v_{1}$ to v_{2} do $e \rightsquigarrow \Sigma, \pi, \quad\left(\right.$ let $i=v_{1}$ in $\left.e\right)$;
(for $i=v_{1}+1$ to v_{2} do e)

Home Work: "for" loops

Propose a Hoare logic rule for the for loop:

$$
\frac{\{?\} e\{?\}}{\{?\} \text { for } i=v_{1} \text { to } V_{2} \text { do } e\{?\}}
$$

Propose a rule for computing the WP:

$$
\mathrm{WP}\left(\text { for } i=v_{1} \text { to } v_{2} \text { invariant } / \text { do } e, Q\right)=\text { ? }
$$

That's all for today, Merry Christmas !

- Next lecture on January 3th
- Several home work exercises to do

