Simple Syntax Extensions (labels, local mutable variables)

Functions and Function calls Proving Termination

More on Specification Languages and Application to Arrays

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

December 13th, 2022

Reminder of the last lecture (continued)

- Modern programming language, ML-like
 - more data types: int, bool, real, unit
 - ► *logic variables*: local and immutable
 - statement = expression of type unit
 - Typing rules
 - Formal operational semantics (small steps)
 - type soundness: every typed program executes without blocking
- Blocking semantics and Weakest Preconditions:
 - e executes safely in Σ, π if it does not block on an assertion or a loop invariant
 - If Σ, π ⊨ WP(e, Q) then e executes safely in Σ, π, and if it terminates then Q valid in the final state

Exercices

Reminder of the last lecture

- Logics and automated prover capabilities
 - propositional logic
 - first-order logic
 - theories: equality, integer arithmetic
- classical Floyd-Hoare logic
 - very simple "IMP" programming language
 - deduction rules for triples {*Pre*}s{*Post*}
- weakest liberal pre-conditions (Dijkstra)
 - function WLP(s, Q) returning a logic formula
 - ► soundness: if $P \rightarrow WLP(s, Q)$ then triple $\{P\}s\{Q\}$ is valid
- ► main "creative" activity: *discovering loop invariants*

Exercise 1

Consider the following (inefficient) program for computing the sum a + b

x <- a; y <- b; while y > 0 do x <- x + 1; y <- y - 1</pre>

(Why3 file to fill in: imp_sum.mlw)

- Propose a post-condition stating that the final value of x is the sum of the values of a and b
- Find an appropriate loop invariant
- Prove the program

Exercise 2

The following program is one of the original examples of Floyd

```
q <- 0; r <- x;
while r >= y do
    r <- r - y; q <- q + 1</pre>
```

(Why3 file to fill in: imp_euclidean_div.mlw)

- Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y
- Find appropriate loop invariants and prove the correctness of the program

Outline

Syntax extensions

Labels Local Mutable Variables Functions and Functions Calls

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

This Lecture's Goals

- Extend that language:
 - Labels for reasoning on the past, local mutable variables
 - Sub-programs, *function calls*, *modular reasoning*
 - Limitations of modular reasoning: subcontract weaknesses, non-inductive invariants
- Analyzing Termination
 - prove termination when wanted
- ► (First-order) logic as a *modeling language*
 - Definitions of new types, product types
 - Definitions of functions, of predicates
 - Axiomatizations
- Application:
 - a bit of higher-order logic
 - program on Arrays

Labels: motivation

Ability to refer to past values of variables

{ true }
let v = r in (r <- v + 42; v)
{ r = r@0ld + 42 /\ result = r@0ld }</pre>

{ true }
let tmp = x in x <- y; y <- tmp
{ x = y@Old /\ y = x@Old }
</pre>

SUM revisited:

```
{ y >= 0 }
L:
while y > 0 do
    invariant { x + y = x@L + y@L }
    x <- x + 1; y <- y - 1
{ x = x@Old + y@Old /\ y = 0 }</pre>
```

Labels: Syntax and Typing

Add in syntax of *terms*:

t ::= x @L (labeled variable access)

Add in syntax of *expressions*:

e ::= L: e (labeled expressions)

Typing:

- > only mutable variables can be accessed through a label
- labels must be declared before use

Implicitly declared labels:

- Here, available in every formula
- Old, available everywhere except pre-conditions

Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- value of variable x at label L is denoted $\Sigma(x, L)$

New semantics of variables in terms:

$$\begin{split} \llbracket x \rrbracket_{\Sigma,\pi} &= & \Sigma(x, \textit{Here}) \\ \llbracket x @L \rrbracket_{\Sigma,\pi} &= & \Sigma(x, L) \end{split}$$

The operational semantics of expressions is modified as follows

 $\begin{array}{rcl} \Sigma, \pi, x < val & \rightsquigarrow & \Sigma\{(x, Here) \leftarrow val\}, \pi, () \\ \Sigma, \pi, L : e & \rightsquigarrow & \Sigma\{(x, L) \leftarrow \Sigma(x, Here) \mid x \text{ any variable}\}, \pi, e \end{array}$

Syntactic sugar: term t@L

- attach label L to any variable of t that does not have an explicit label yet
- example: (x + y@K + 2)@L + x is x@L + y@K + 2 + x@Here

New rules for WP

New rules for computing WP:

Exercise:

WP(L: x < x + 42, x@Here > x@L) =?

Example: computation of the GCD

(assuming notion of greatest common divisor exists in the logic)

Euclid's algorithm:

```
requires { x >= 0 /\ y >= 0 }
ensures { result = gcd(x@Old,y@Old) }
= L:
while y > 0 do
    invariant { ? }
    let r = mod x y in x <- y; y <- r
    done;
    x</pre>
```

See file gcd_euclid_labels.mlw

Mutable Local Variables

We extend the syntax of expressions with

e ::= let ref id = e in e

(note: I use "ref" instead of "mut" because of Why3)

Example:	isqrt revisited

```
val ref x : int
val ref res : int
res <- 0;
let ref sum = 1 in
while sum <= x do
  res <- res + 1; sum <- sum + 2 * res + 1
done</pre>
```

Operational Semantics

 $\Sigma, \pi, \mathbf{e} \rightsquigarrow \Sigma', \pi', \mathbf{e}'$

 π no longer contains just immutable variables

 $\frac{\Sigma, \pi, \boldsymbol{e}_1 \rightsquigarrow \Sigma', \pi', \boldsymbol{e}_1'}{\Sigma, \pi, \texttt{let ref } x = \boldsymbol{e}_1 \texttt{ in } \boldsymbol{e}_2 \rightsquigarrow \Sigma', \pi', \texttt{let ref } x = \boldsymbol{e}_1' \texttt{ in } \boldsymbol{e}_2}$

 $\overline{\Sigma, \pi, \texttt{let ref } x = v \texttt{ in } e \leadsto \Sigma, \pi\{(x, \textit{Here}) \leftarrow v\}, e}$

 $\frac{x \text{ local variable}}{\Sigma, \pi, x \leftarrow v \rightsquigarrow \Sigma, \pi\{(x, \textit{Here}) \leftarrow v\}, e}$

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

WP(let ref $x = e_1$ in e_2, Q) = WP($e_1, WP(e_2, Q)[x \leftarrow result]$)

 $WP(x \leftarrow e, Q) = WP(e, Q[x \leftarrow result])$

 $WP(L: e, Q) = WP(e, Q)[x@L \leftarrow x@Here | x any variable]$

Functions

Program structure:

prog	::=	deci
decl	::=	vardecl fundecl
vardecl	::=	val ref id : basetype
fundecl	::=	let id((param,)*):basetype
		contract body e
param	::=	id : basetype
contract	::=	requires t writes $(id_{i})^{*}$ ensures t

1001*

Function definition:

- Contract:
 - pre-condition
 - post-condition (label Old available)
 - assigned variables: clause writes
- Body: expression

Example: isqrt

```
let isqrt(x:int): int
  requires x >= 0
  ensures result >= 0 /\
        sqr(result) <= x < sqr(result + 1)
body
  let ref res = 0 in
  let ref sum = 1 in
  while sum <= x do
      res <- res + 1;
      sum <- sum + 2 * res + 1
  done;
  res</pre>
```

Typing

Definition *d* of function *f*:

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

Well-formed definitions:

 $\begin{array}{ll}
 \Gamma' = \{x_i : \tau_i \mid 1 \le i \le n\} \cdot \Gamma & \vec{w} \subseteq \Gamma \\
 \Gamma' \vdash Pre, Post : formula & \Gamma' \vdash Body : \tau \\
 \vec{w}_g \subseteq \vec{w} \text{ for each call } g & y \in \vec{w} \text{ for each assign } y \\
 \Gamma \vdash d : wf
 \end{array}$

where Γ contains the global declarations

Example using Old label

```
val ref res: int
let incr(x:int)
  requires true
  writes res
  ensures res = res@Old + x
body
  res <- res + x</pre>
```

Typing: function calls

let $f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau$ requires *Pre* writes \vec{w} ensures *Post* body *Body*

Well-typed function calls:

$$\frac{\Gamma \vdash t_i : \tau_i}{\Gamma \vdash f(t_1, \ldots, t_n) : \tau}$$

Note: for simplicity the expressions t_i are assumed without side-effect (introduce extra let-expression if needed)

Operational Semantics of a Function Call

let $f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau$ requires *Pre* writes \vec{w} ensures *Post* body *Body*

 $\frac{\pi = \{x_i \mapsto [[t_i]]_{\Sigma,\pi}\} \quad \Sigma, \pi \models Pre}{\Sigma, \Pi, f(t_1, \dots, t_n) \rightsquigarrow \Sigma, (\pi, Post) \cdot \Pi, (Old : Body)}$

A *call frame* is a pair (π , *Post*) of a local stack and a formula Π denotes a *stack of call frames*

Blocking Semantics

Execution blocks at call if pre-condition does not hold

WP Rule of Function Call

let $f(x_1 : \tau_1, ..., x_n : \tau_n) : \tau$ requires *Pre* writes \vec{w} ensures *Post* body *Body*

 $WP(f(t_1,...,t_n), Q) = Pre[x_i \leftarrow t_i] \land \\ \forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j @Old \leftarrow w_j] \rightarrow Q[w_j \leftarrow v_j])$

Modular Proof Methodology

When calling function f, only the contract of f is visible, not its body

Operational Semantics of returning from Function Call

We check that the *post-condition* holds at the end:

 $\frac{\Sigma, \pi \models \textit{Post}[\textit{result} \leftarrow \textit{v}]}{\Sigma, (\pi, \textit{Post}) \cdot \Pi, \textit{v} \rightsquigarrow \Sigma, \Pi, \textit{v}}$

Blocking Semantics Execution blocks at return if post-condition does not hold

Example: isqrt(42)

Exercise: prove that $\{true\}isqrt(42)\{result = 6\}$ holds

val isqrt(x:int): int
requires x >= 0
writes (nothing)
ensures result >= 0 /\
 sqr(result) <= x < sqr(result + 1)</pre>

Abstraction of sub-programs

- Keyword val introduces a function with a contract but without body
- writes clause is mandatory in that case

Example: Incrementation

val ref res: int

val incr(x:int):unit
writes res
ensures res = res@Old + x

Exercise: Prove that $\{res = 6\}incr(36)\{res = 42\}$ holds

Limitations of modular reasoning

```
let f (x:int) : int
  ensures { result > x }
  = x+1
```

let g () =
 let a = f(0) in
 assert { a = 1 }

Subcontract weakness

A program can be *safe* (never blocks on annotations) and yet not being provable

Soundness Theorem for a Complete Program

Assuming that for each function defined as

let $f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau$ requires *Pre* writes \vec{w} ensures *Post* body *Body*

we have

▶ variables assigned in *Body* belong to \vec{w} ,

► |= $Pre \rightarrow WP(Body, Post)[w_i@Old \leftarrow w_i]$ holds, then for any formula Q, any expression e, any configuration (Σ, π) :

if $\Sigma, \pi \models WP(e, Q)$ then execution of Σ, π, e is *safe*

Remark: (mutually) recursive functions are allowed

Non-inductive loop invariants

let ref i = 0 in
while i < 2 do
 invariant { i <> 1 }
 i <- i+2;
done</pre>

Weakness of loop invariants

An invariant might be valid (the program is safe) and yet not be provably preserved by an arbitrary loop iteration

Inductive invariants

A loop invariant is called *inductive* when it can be proved initially valid and preserved by loop iterations

In other words: a loop invariant may be valid (in the sense of safety) and yet not being inductive

Limitations of modular reasoning (case of loops)

let ref i = 5 in
while i < 10 do
 invariant { i >= 0 }
 i <- i+2;
done;
assert { i = 11 }</pre>

Subcontract weakness (for loop)

A program can be *safe* (never blocks on annotations) and yet not being provable

Termination

Goal

Prove that a program terminates (on all inputs satisfying the precondition)

Amounts to show that

- loops never execute infinitely many times
- (mutual) recursive calls cannot occur infinitely many times

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Case of loops

Solution: annotate loops with loop variants

- ▶ a term that *decreases at each iteration*
- For some well-founded ordering ≺ (i.e. there is no infinite sequence val₁ ≻ val₂ ≻ val₃ ≻ ···
- A typical ordering on integers:

$$x \prec y = x < y \land 0 \leq y$$

Syntax

New syntax construct:

e ::= while e invariant l variant t, \prec do e

Example:

{ y >= 0 }
L:
while y > 0 do
 invariant { x + y = x@L + y@L }
 variant { y }
 x <- x + 1; y <- y - 1
{ x = x@Old + y@Old /\ y = 0 }</pre>

Operational semantics

$$\begin{split} & \llbracket I \rrbracket_{\Sigma,\pi} \text{ holds} \\ \hline \Sigma, \pi, \text{while } \textit{\textit{C}} \text{ invariant } \textit{\textit{I}} \text{ variant } \textit{\textit{t}}, \prec \text{ do } \textit{\textit{e}} \rightsquigarrow \\ \Sigma, \pi, \textit{\textit{L}}: \text{if } \textit{\textit{c}} \\ & \text{then } (\textit{e}; \text{assert } \textit{\textit{t}} \prec \textit{t} @\textit{\textit{L}}; \\ & \text{while } \textit{\textit{C}} \text{ invariant } \textit{\textit{I}} \text{ variant } \textit{\textit{t}}, \prec \text{ do } \textit{\textit{e}}) \\ & \text{else ()} \end{split}$$

(new parts shown in red)

Weakest Precondition

```
 \begin{array}{l} \operatorname{WP}(\texttt{while } \textit{\textit{C}} \texttt{ invariant } \textit{\textit{I}} \texttt{ variant } \textit{\textit{I}}, \prec \texttt{ do } \textit{\textit{e}}, \textit{\textit{Q}}) = \\ I \land \\ \forall \vec{v}, (\textit{\textit{I}} \rightarrow \operatorname{WP}(\textit{\textit{L}} : \textit{c}, \texttt{if } \textit{\textit{result}} \texttt{ then } \operatorname{WP}(\textit{\textit{e}}, \textit{\textit{I}} \land \textit{\textit{t}} \prec \textit{t@L}) \texttt{ else } \textit{\textit{Q}})) \\ [\textit{w}_i \leftarrow \textit{v}_i] \end{array}
```

In practice with Why3

- presence of loop variants tells if one wants to prove termination or not
- warning issued if no variant given
- keyword diverges in contract for non-terminating functions
- default ordering determined from type of t

Examples

Exercise: find adequate variants

i <- 0;
while i <= 100
variant ?
do i <- i+1
done;</pre>

while sum <= x
 variant ?
do
 res <- res + 1; sum <- sum + 2 * res + 1
done;</pre>

Solutions:

variant 100 - i

invariant res >= 0
variant x - sum

Recursive Functions: Termination

If a function is recursive, termination of call can be proved, provided that the function is annotated with a *variant*

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
variant var, \prec
writes \vec{w}
ensures Post
body Body
```

WP for function call:

 $WP(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \land var[x_i \leftarrow t_i] \prec var@Old \land \forall \vec{y}, (Post[x_i \leftarrow t_i][w_j \leftarrow y_j][w_j@Old \leftarrow w_j] \rightarrow Q[w_j \leftarrow y_j])$

Case of mutual recursion

Assume two functions $f(\vec{x})$ and $g(\vec{y})$ that call each other

- each should be given its own variant v_f (resp. v_g) in their contract
- \blacktriangleright with the same well-founded ordering \prec
- When *f* calls $g(\vec{t})$ the WP should include

 $v_g[\vec{y} \leftarrow \vec{t}] \prec v_f@Old$

and symmetrically when g calls f

Example of variant on a recursive function

let fib (x:int) : int
variant ?
body
if x <= 1 then 1 else fib (x-1) + fib (x-2)</pre>

Solution:

variant x

Home Work 1: McCarthy's 91 Function

 $f91(n) = if \ n \le 100$ then f91(f91(n+11)) else n-10

Find adequate specifications

let f91(n:int): int	
requires ?	
variant ?	
writes ?	
ensures ?	
body	
if n <= 100 then f91(f91(n + 11)) else n - 10	

Use canvas file mccarthy.mlw

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

(First-Order) Logic as a Modeling Language Axiomatic Definitions

Programs on Arrays

Why3 Logic Language

- (First-order) logic, built-in arithmetic (integers and reals)
- Definitions à la ML
 - ► logic (i.e. pure) *functions, predicates*
 - structured types, pattern-matching (next lecture)
- ► type polymorphism à la ML
- ► higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (next lecture)

Important note

Logic functions and predicates are always totally defined

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- ► Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL
- ▶ ...

Case of Why3, ACSL, Dafny: trade-off between

- expressiveness of specifications
- support by automated provers

Definition of new Logic Symbols

Logic functions defined as

function $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau = e$

Predicate defined as

predicate $p(x_1 : \tau_1, \ldots, x_n : \tau_n) = e$

where τ_i, τ are logic types (not references)

- ► No recursion allowed (yet)
- ► No side effects
- Defines total functions and predicates

Logic Symbols: Examples

function sqr(x:int) = x * x

predicate divides(x:int,y:int) =
 exists z:int. y = x * z

predicate is_prime(x:int) =
 x >= 2 /\
 forall y z:int. y >= 0 /\ z >= 0 /\ x = y*z ->
 y=1 \/ z=1

Axiomatic Definitions

Function and predicate declarations of the form

function $f(\tau, ..., \tau_n) : \tau$ predicate $p(\tau, ..., \tau_n)$

together with axioms

axiom id : formula

specify that f (resp. p) is any symbol satisfying the axioms

Definition of new logic types: Product Types

► Tuples types are built-in:

type pair = (int, int)

Record types can be defined:

type point = { x:real; y:real }

Fields are immutable

We allow let with pattern, e.g.

let (a,b) = ... in ...
let { x = a; y = b } = ... in ...

Dot notation for records fields, e.g.

p.x + p.y

Axiomatic Definitions

Example: division

```
function div(real,real):real
axiom mul_div:
    forall x,y. y<>0 -> div(x,y)*y = x
```

Example: factorial

function fact(int):int
axiom fact0:
 fact(0) = 1
axiom factn:
 forall n:int. n >= 1 -> fact(n) = n * fact(n-1)

Exercise: axiomatize the GCD

Axiomatic Definitions

Functions/predicates are typically underspecified
 we can model partial functions in a logic of total functions

Warning about soundness

Axioms may introduce inconsistencies

function div(real,real):real
axiom mul_div: forall x,y. div(x,y)*y = x

implies 1 = div(1,0) * 0 = 0

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Underspecified Logic Functions and Run-time Errors

Error "Division by zero" can be modeled by an abstract function

val div_real(x:real,y:real):real
 requires y <> 0.0
 ensures result = div(x,y)

Reminder

Execution blocks when an invalid annotation is met

Higher-order logic as a built-in theory

- type of *maps* : $\tau_1 \rightarrow \tau_2$
- ► lambda-expressions: fun *x* : *τ* -> *t*

Definition of selection function:

function select $(f: \alpha \rightarrow \beta)$ $(x: \alpha) : \beta = f x$

Definition of function update:

function store $(f : \alpha \to \beta) (x : \alpha) (v : \beta) : \alpha \to \beta =$ fun $(y : \alpha) \rightarrow if x = y$ then v else f y

SMT (first-order) theory of "functional arrays"

lemma select_store_eq: forall f: $\alpha \rightarrow \beta$, x: α , v: β .
select(store(f,x,v),x) = v
lemma select_store_neq: forall f: $\alpha \rightarrow \beta$, x y: α , v: β .
x <> y -> select(store(f,x,v),y) = select(f,y)

Arrays as Mutable Variables of type "Map"

```
• Array variable: mutable variable of type int -> \alpha
```

In a program, the standard assignment operation

a[i] <- e

is interpreted as

a <- store(a,i,e)

Simple Example

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
= 13 = 13
= true
```

Note how we use both lemmas *select_store_eq* and *select_store_neq*

Simple Example

val ref a: int -> int

let test()
writes a
ensures select(a,0) = 13 (* a[0] = 13 *)
body
a <- store(a,0,13); (* a[0] <- 13 *)
a <- store(a,1,42) (* a[1] <- 42 *)</pre>

Exercise: prove this program

Example: Swap

Permute the contents of cells <i>i</i>	i and j	i in an	array	a:
--	---------	---------	-------	----

```
val ref a: int -> int

let swap(i:int,j:int)
writes a
ensures select(a,i) = select(a@Old,j) /\
        select(a,j) = select(a@Old,i) /\
        forall k:int. k <> i /\ k <> j ->
            select(a,k) = select(a@Old,k)

body
let tmp = select(a,i) in (* tmp <-a[i]*)
a <- store(a,i,select(a,j)); (* a[i]<-a[j]*)
a <- store(a,j,tmp) (* a[j]<-tmp *)
</pre>
```

Arrays as Variables of Type "length \times map"

- Goal: model "out-of-bounds" run-time errors
- Array variable: mutable variable of type array α

- a[i] interpreted as a call to get(a,i)
- a[i] <- v interpreted as a call to set(a,i,v)</pre>

Note about Arrays in Why3

```
use array.Array
syntax: a.length, a[i], a[i]<-v</pre>
```

Example: swap

```
val a: array int

let swap (i:int) (j:int)
  requires { 0 <= i < a.length /\ 0 <= j < a.length }
  writes { a }
  ensures { a[i] = old a[j] /\ a[j] = old a[i]}
  ensures { forall k:int.
            0 <= k < a.length /\ k <> i /\ k <> j ->
            a[k] = old a[k] }
=
  let tmp = a[i] in a[i] <- a[j]; a[j] <- tmp</pre>
```

Example: Swap again

```
val ref a: array int

let swap(i:int,j:int)
    requires 0 <= i < a.length /\ 0 <= j < a.length
    writes a
    ensures select(a.elts,i) = select(a@Old.elts,j) /\
            select(a.elts,j) = select(a@Old.elts,i) /\
            forall k:int. 0 <= k < a.length /\ k <> i /\ k <> j ->
                select(a.elts,k) = select(a@Old.elts,k)

body
let tmp = get(a,i) in (* tmp <-a[i]*)
    set(a,i,get(a,j)); (* a[i]<-a[j]*)
    set(a,j,tmp) (* a[j]<-tmp *)</pre>
```

Exercises on Arrays

- Prove Swap by computing the WP
- Using WP, prove the program

```
let test()
  requires
    select(a,0) = 13 /\ select(a,1) = 42 /\
    select(a,2) = 64
  ensures
    select(a,0) = 64 /\ select(a,1) = 42 /\
    select(a,2) = 13
body
  swap(0,2)
```

Exercise on Arrays: incrementation

Specify, implement, and prove a program that increments by 1 all cells, between given indices *i* and *j*, of an array of reals

See file array_incr.mlw

Home Work 4: Binary Search

 $\begin{array}{l} \textit{low} = 0; \textit{high} = n - 1;\\ \textit{while low} \leq \textit{high}:\\ \textit{let } \textit{m} \textit{ be the middle of low and high}\\ \textit{if } a[m] = \textit{v} \textit{ then return } m\\ \textit{if } a[m] < \textit{v} \textit{ then continue search between } \textit{m} \textit{ and high}\\ \textit{if } a[m] > \textit{v} \textit{ then continue search between } \textit{low and } m \end{array}$

See file bin_search.mlw

Exercise: Search Algorithms

```
var a: array real
let search(n:int, v:real): int
  requires 0 <= n
  ensures { ? }
= ?</pre>
```

- 1. Formalize postcondition: if v occurs in a, between 0 and n-1, then result is an index where v occurs, otherwise result is set to -1
- 2. Implement and prove *linear search*:

res <- 1; for each *i* from 0 to n - 1: if a[i] = v then *res* <- *i*; return *res*

See file lin_search.mlw

Home Work 5: "for" loops

Syntax: for $i = e_1$ to e_2 do e_2 Typing:

- ▶ *i* visible only in *e*, and is immutable
- e₁ and e₂ must be of type int, e must be of type unit

Operational semantics: (assuming e_1 and e_2 are values v_1 and v_2)

 $\frac{V_1 > V_2}{\Sigma, \pi, \text{for } i = V_1 \text{ to } V_2 \text{ do } \boldsymbol{e} \rightsquigarrow \Sigma, \pi, ()}$

$$\label{eq:starsestimate} \begin{split} & \frac{v_1 \leq v_2}{\Sigma, \pi, \, \text{for} \, i = v_1 \, \text{to} \, v_2 \, \text{do} \, \boldsymbol{e} \leadsto \Sigma, \pi, \, \begin{array}{l} (\text{let} \, i = v_1 \, \text{in} \, \boldsymbol{e}); \\ (\text{for} \, i = v_1 + 1 \, \text{to} \, v_2 \, \text{do} \, \boldsymbol{e}) \end{split}$$

Home Work: "for" loops

That's all for today, Merry Christmas !

Propose a Hoare logic rule for the for loop:

 $\frac{\{?\}e\{?\}}{\{?\}\text{for }i=v_1 \text{ to }v_2 \text{ do }e\{?\}}$

Propose a rule for computing the WP:

WP(for $i = v_1$ to v_2 invariant I do e, Q) =?

- Next lecture on January 3th
- Several home work exercises to do