
Simple Syntax Extensions
(labels, local mutable variables)

Functions and Function calls
Proving Termination

More on Specification Languages and Application to
Arrays

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

December 13th, 2022

Reminder of the last lecture

I Logics and automated prover capabilities
I propositional logic
I first-order logic
I theories: equality, integer arithmetic

I classical Floyd-Hoare logic
I very simple “IMP” programming language
I deduction rules for triples {Pre}s{Post}

I weakest liberal pre-conditions (Dijkstra)
I function WLP(s,Q) returning a logic formula
I soundness: if P →WLP(s,Q) then triple {P}s{Q} is valid

I main “creative” activity: discovering loop invariants

Reminder of the last lecture (continued)

I Modern programming language, ML-like
I more data types: int, bool, real, unit
I logic variables: local and immutable
I statement = expression of type unit
I Typing rules
I Formal operational semantics (small steps)
I type soundness: every typed program executes without

blocking
I Blocking semantics and Weakest Preconditions:

I e executes safely in Σ, π if it does not block on an assertion
or a loop invariant

I If Σ, π |= WP(e,Q) then e executes safely in Σ, π, and if it
terminates then Q valid in the final state

I Exercices

Exercise 1

Consider the following (inefficient) program for computing the
sum a + b

x <- a; y <- b;

while y > 0 do

x <- x + 1; y <- y - 1

(Why3 file to fill in: imp_sum.mlw)
I Propose a post-condition stating that the final value of x is

the sum of the values of a and b
I Find an appropriate loop invariant
I Prove the program

Exercise 2

The following program is one of the original examples of Floyd

q <- 0; r <- x;

while r >= y do

r <- r - y; q <- q + 1

(Why3 file to fill in: imp_euclidean_div.mlw)
I Propose a formal precondition to express that x is

assumed non-negative, y is assumed positive, and a
formal post-condition expressing that q and r are
respectively the quotient and the remainder of the
Euclidean division of x by y

I Find appropriate loop invariants and prove the correctness
of the program

This Lecture’s Goals

I Extend that language:
I Labels for reasoning on the past, local mutable variables
I Sub-programs, function calls, modular reasoning
I Limitations of modular reasoning: subcontract weaknesses,

non-inductive invariants
I Analyzing Termination

I prove termination when wanted

I (First-order) logic as a modeling language
I Definitions of new types, product types
I Definitions of functions, of predicates
I Axiomatizations

I Application:
I a bit of higher-order logic
I program on Arrays

Outline

Syntax extensions
Labels
Local Mutable Variables
Functions and Functions Calls

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Labels: motivation
Ability to refer to past values of variables

{ true }

let v = r in (r <- v + 42; v)

{ r = r@Old + 42 /\ result = r@Old }

{ true }

let tmp = x in x <- y; y <- tmp

{ x = y@Old /\ y = x@Old }

SUM revisited:

{ y >= 0 }

L:

while y > 0 do

invariant { x + y = x@L + y@L }

x <- x + 1; y <- y - 1

{ x = x@Old + y@Old /\ y = 0 }

Labels: Syntax and Typing

Add in syntax of terms:

t ::= x@L (labeled variable access)

Add in syntax of expressions:

e ::= L : e (labeled expressions)

Typing:
I only mutable variables can be accessed through a label
I labels must be declared before use

Implicitly declared labels:
I Here, available in every formula
I Old , available everywhere except pre-conditions

Labels: Operational Semantics
Program state
I becomes a collection of maps indexed by labels
I value of variable x at label L is denoted Σ(x ,L)

New semantics of variables in terms:

JxKΣ,π = Σ(x ,Here)
Jx@LKΣ,π = Σ(x ,L)

The operational semantics of expressions is modified as follows

Σ, π, x <- val Σ{(x ,Here)← val}, π, ()
Σ, π,L : e Σ{(x ,L)← Σ(x ,Here) | x any variable}, π,e

Syntactic sugar: term t@L
I attach label L to any variable of t that does not have an

explicit label yet
I example:(x + y@K + 2)@L + x is x@L + y@K + 2 + x@Here

New rules for WP

New rules for computing WP:

WP(x <- t ,Q) = Q[x@Here← t@Here]
WP(L : e,Q) = WP(e,Q)[x@L← x@Here | x any variable]

Exercise:

WP(L : x <- x + 42, x@Here > x@L) =?

Example: computation of the GCD

(assuming notion of greatest common divisor exists in the logic)

Euclid’s algorithm:

requires { x >= 0 /\ y >= 0 }

ensures { result = gcd(x@Old,y@Old) }

= L:

while y > 0 do

invariant { ? }

let r = mod x y in x <- y; y <- r

done;

x

See file gcd_euclid_labels.mlw

gcd_euclid_labels.mlw

Mutable Local Variables

We extend the syntax of expressions with

e ::= let ref id = e in e

(note: I use “ref” instead of “mut” because of Why3)

Example: isqrt revisited

val ref x : int

val ref res : int

res <- 0;

let ref sum = 1 in

while sum <= x do

res <- res + 1; sum <- sum + 2 * res + 1

done

Operational Semantics

Σ, π,e Σ′, π′,e′

π no longer contains just immutable variables

Σ, π,e1 Σ′, π′,e′1
Σ, π, let ref x = e1 in e2 Σ′, π′, let ref x = e′1 in e2

Σ, π, let ref x = v in e Σ, π{(x ,Here)← v},e

x local variable
Σ, π, x <- v Σ, π{(x ,Here)← v},e

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

WP(let ref x = e1 in e2,Q) = WP(e1,WP(e2,Q)[x ← result])

WP(x <- e,Q) = WP(e,Q[x ← result])

WP(L : e,Q) = WP(e,Q)[x@L← x@Here | x any variable]

Functions
Program structure:

prog ::= decl∗

decl ::= vardecl | fundecl
vardecl ::= val ref id : basetype
fundecl ::= let id((param,)∗):basetype

contract body e
param ::= id : basetype

contract ::= requires t writes (id ,)∗ ensures t

Function definition:
I Contract:

I pre-condition
I post-condition (label Old available)
I assigned variables: clause writes

I Body: expression

Example: isqrt

let isqrt(x:int): int

requires x >= 0

ensures result >= 0 /\

sqr(result) <= x < sqr(result + 1)

body

let ref res = 0 in

let ref sum = 1 in

while sum <= x do

res <- res + 1;

sum <- sum + 2 * res + 1

done;

res

Example using Old label

val ref res: int

let incr(x:int)

requires true

writes res

ensures res = res@Old + x

body

res <- res + x

Typing

Definition d of function f :

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

Well-formed definitions:

Γ′ = {xi : τi | 1 ≤ i ≤ n} · Γ ~w ⊆ Γ
Γ′ ` Pre,Post : formula Γ′ ` Body : τ
~wg ⊆ ~w for each call g y ∈ ~w for each assign y

Γ ` d : wf

where Γ contains the global declarations

Typing: function calls

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

Well-typed function calls:

Γ ` ti : τi

Γ ` f (t1, . . . , tn) : τ

Note: for simplicity the expressions ti are assumed without
side-effect (introduce extra let-expression if needed)

Operational Semantics of a Function Call

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

π = {xi 7→ JtiKΣ,π} Σ, π |= Pre
Σ,Π, f (t1, . . . , tn) Σ, (π,Post) · Π, (Old : Body)

A call frame is a pair (π,Post) of a local stack and a formula
Π denotes a stack of call frames

Blocking Semantics
Execution blocks at call if pre-condition does not hold

Operational Semantics of returning from Function Call

We check that the post-condition holds at the end:

Σ, π |= Post[result← v]

Σ, (π,Post) · Π, v Σ,Π, v

Blocking Semantics
Execution blocks at return if post-condition does not hold

WP Rule of Function Call

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

WP(f (t1, . . . , tn),Q) = Pre[xi ← ti] ∧
∀~v , (Post[xi ← ti ,wj ← vj ,wj@Old← wj]→ Q[wj ← vj])

Modular Proof Methodology
When calling function f , only the contract of f is visible, not its
body

Example: isqrt(42)

Exercise: prove that {true}isqrt(42){result = 6} holds

val isqrt(x:int): int

requires x >= 0

writes (nothing)

ensures result >= 0 /\

sqr(result) <= x < sqr(result + 1)

Abstraction of sub-programs
I Keyword val introduces a function with a contract but

without body
I writes clause is mandatory in that case

Example: Incrementation

val ref res: int

val incr(x:int):unit

writes res

ensures res = res@Old + x

Exercise: Prove that {res = 6}incr(36){res = 42} holds

Soundness Theorem for a Complete Program
Assuming that for each function defined as

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
writes ~w
ensures Post
body Body

we have
I variables assigned in Body belong to ~w ,
I |= Pre→WP(Body,Post)[wi@Old← wi] holds,

then for any formula Q, any expression e, any configuration
(Σ, π):

if Σ, π |= WP(e,Q) then execution of Σ, π,e is safe

Remark: (mutually) recursive functions are allowed

Limitations of modular reasoning

let f (x:int) : int

ensures { result > x }

= x+1

let g () =

let a = f(0) in

assert { a = 1 }

Subcontract weakness
A program can be safe (never blocks on annotations) and yet
not being provable

Non-inductive loop invariants

let ref i = 0 in

while i < 2 do

invariant { i <> 1 }

i <- i+2;

done

Weakness of loop invariants
An invariant might be valid (the program is safe) and yet not be
provably preserved by an arbitrary loop iteration

Inductive invariants
A loop invariant is called inductive when it can be proved
initially valid and preserved by loop iterations

In other words: a loop invariant may be valid (in the sense of
safety) and yet not being inductive

Limitations of modular reasoning (case of loops)

let ref i = 5 in

while i < 10 do

invariant { i >= 0 }

i <- i+2;

done;

assert { i = 11 }

Subcontract weakness (for loop)
A program can be safe (never blocks on annotations) and yet
not being provable

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Termination

Goal
Prove that a program terminates (on all inputs satisfying the
precondition)

Amounts to show that
I loops never execute infinitely many times
I (mutual) recursive calls cannot occur infinitely many times

Case of loops

Solution: annotate loops with loop variants
I a term that decreases at each iteration
I for some well-founded ordering ≺ (i.e. there is no infinite

sequence val1 � val2 � val3 � · · ·
I A typical ordering on integers:

x ≺ y = x < y ∧ 0 ≤ y

Syntax

New syntax construct:

e ::= while e invariant I variant t ,≺ do e

Example:

{ y >= 0 }

L:

while y > 0 do

invariant { x + y = x@L + y@L }

variant { y }

x <- x + 1; y <- y - 1

{ x = x@Old + y@Old /\ y = 0 }

Operational semantics

JIKΣ,π holds
Σ, π, while c invariant I variant t ,≺ do e

Σ, π,L :if c
then (e; assert t ≺ t@L;

while c invariant I variant t ,≺ do e)
else ()

(new parts shown in red)

Weakest Precondition

WP(while c invariant I variant t ,≺ do e,Q) =
I∧
∀~v , (I →WP(L :c, if result then WP(e, I∧t ≺ t@L) else Q))

[wi ← vi]

In practice with Why3
I presence of loop variants tells if one wants to prove

termination or not
I warning issued if no variant given
I keyword diverges in contract for non-terminating functions
I default ordering determined from type of t

Examples
Exercise: find adequate variants

i <- 0;

while i <= 100

variant ?

do i <- i+1

done;

while sum <= x

variant ?

do

res <- res + 1; sum <- sum + 2 * res + 1

done;

Solutions:

variant 100 - i invariant res >= 0

variant x - sum

Recursive Functions: Termination

If a function is recursive, termination of call can be proved,
provided that the function is annotated with a variant

let f (x1 : τ1, . . . , xn : τn) : τ
requires Pre
variant var , ≺
writes ~w
ensures Post
body Body

WP for function call:

WP(f (t1, . . . , tn),Q) = Pre[xi ← ti] ∧ var [xi ← ti] ≺ var@Old ∧
∀~y , (Post[xi ← ti][wj ← yj][wj@Old← wj]→ Q[wj ← yj])

Example of variant on a recursive function

let fib (x:int) : int

variant ?

body

if x <= 1 then 1 else fib (x-1) + fib (x-2)

Solution:

variant x

Case of mutual recursion

Assume two functions f (~x) and g(~y) that call each other

I each should be given its own variant vf (resp. vg) in their
contract

I with the same well-founded ordering ≺

When f calls g(~t) the WP should include

vg[~y ←~t] ≺ vf @Old

and symmetrically when g calls f

Home Work 1: McCarthy’s 91 Function

f91(n) = if n ≤ 100 then f91(f91(n + 11)) else n − 10

Find adequate specifications

let f91(n:int): int

requires ?

variant ?

writes ?

ensures ?

body

if n <= 100 then f91(f91(n + 11)) else n - 10

Use canvas file mccarthy.mlw

mccarthy.mlw

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs
(First-Order) Logic as a Modeling Language
Axiomatic Definitions

Programs on Arrays

About Specification Languages

Specification languages:
I Algebraic Specifications: CASL, Larch
I Set theory: VDM, Z notation, Atelier B
I Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
I Object-Oriented: Eiffel, JML, OCL
I . . .

Case of Why3, ACSL, Dafny: trade-off between
I expressiveness of specifications
I support by automated provers

Why3 Logic Language

I (First-order) logic, built-in arithmetic (integers and reals)
I Definitions à la ML

I logic (i.e. pure) functions, predicates
I structured types, pattern-matching (next lecture)

I type polymorphism à la ML
I higher-order logic as a built-in theory of functions
I Axiomatizations
I Inductive predicates (next lecture)

Important note
Logic functions and predicates are always totally defined

Definition of new Logic Symbols

Logic functions defined as

function f (x1 : τ1, . . . , xn : τn) : τ = e

Predicate defined as

predicate p(x1 : τ1, . . . , xn : τn) = e

where τi , τ are logic types (not references)
I No recursion allowed (yet)
I No side effects
I Defines total functions and predicates

Logic Symbols: Examples

function sqr(x:int) = x * x

predicate divides(x:int,y:int) =

exists z:int. y = x * z

predicate is_prime(x:int) =

x >= 2 /\

forall y z:int. y >= 0 /\ z >= 0 /\ x = y*z ->

y=1 \/ z=1

Definition of new logic types: Product Types
I Tuples types are built-in:

type pair = (int, int)

I Record types can be defined:

type point = { x:real; y:real }

Fields are immutable

I We allow let with pattern, e.g.

let (a,b) = ... in ...

let { x = a; y = b } = ... in ...

I Dot notation for records fields, e.g.

p.x + p.y

Axiomatic Definitions

Function and predicate declarations of the form

function f (τ, . . . , τn) : τ
predicate p(τ, . . . , τn)

together with axioms

axiom id : formula

specify that f (resp. p) is any symbol satisfying the axioms

Axiomatic Definitions

Example: division

function div(real,real):real

axiom mul_div:

forall x,y. y<>0 -> div(x,y)*y = x

Example: factorial

function fact(int):int

axiom fact0:

fact(0) = 1

axiom factn:

forall n:int. n >= 1 -> fact(n) = n * fact(n-1)

Exercise: axiomatize the GCD

Axiomatic Definitions

I Functions/predicates are typically underspecified
⇒ we can model partial functions in a logic of total
functions

Warning about soundness
Axioms may introduce inconsistencies

function div(real,real):real

axiom mul_div: forall x,y. div(x,y)*y = x

implies 1 = div(1,0)*0 = 0

Underspecified Logic Functions and Run-time Errors

Error “Division by zero” can be modeled by an abstract function

val div_real(x:real,y:real):real

requires y <> 0.0

ensures result = div(x,y)

Reminder
Execution blocks when an invalid annotation is met

Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Higher-order logic as a built-in theory
I type of maps : τ1 → τ2

I lambda-expressions: fun x : τ -> t

Definition of selection function:

function select (f : α→ β) (x : α) : β = f x

Definition of function update:

function store (f : α→ β) (x : α) (v : β) : α→ β =

fun (y : α) -> if x = y then v else f y

SMT (first-order) theory of “functional arrays”

lemma select_store_eq: forall f:α->β, x:α, v:β.
select(store(f,x,v),x) = v

lemma select_store_neq: forall f:α->β, x y:α, v:β.
x <> y -> select(store(f,x,v),y) = select(f,y)

Arrays as Mutable Variables of type “Map”

I Array variable: mutable variable of type int -> α

I In a program, the standard assignment operation
a[i] <- e

is interpreted as
a <- store(a,i,e)

Simple Example

val ref a: int -> int

let test()

writes a

ensures select(a,0) = 13 (* a[0] = 13 *)

body

a <- store(a,0,13); (* a[0] <- 13 *)

a <- store(a,1,42) (* a[1] <- 42 *)

Exercise: prove this program

Simple Example

WP((a <- store(a,0,13);
a <- store(a,1,42)), select(a,0) = 13))

= WP(a <- store(a,0,13),
WP(a <- store(a,1,42), select(a,0) = 13)))

= WP(a <- store(a,0,13); select(store(a,1,42),0) = 13)
= select(store(store(a,0,13),1,42),0) = 13
= select(store(a,0,13),0) = 13
= 13 = 13
= true

Note how we use both lemmas select_store_eq and
select_store_neq

Example: Swap

Permute the contents of cells i and j in an array a:

val ref a: int -> int

let swap(i:int,j:int)

writes a

ensures select(a,i) = select(a@Old,j) /\

select(a,j) = select(a@Old,i) /\

forall k:int. k <> i /\ k <> j ->

select(a,k) = select(a@Old,k)

body

let tmp = select(a,i) in (* tmp <-a[i]*)

a <- store(a,i,select(a,j)); (* a[i]<-a[j]*)

a <- store(a,j,tmp) (* a[j]<-tmp *)

Arrays as Variables of Type “length × map”

I Goal: model “out-of-bounds” run-time errors
I Array variable: mutable variable of type array α

type array ’a = { length : int; elts : int -> ’a}

val get (ref a:array ’a) (i:int) : ’a

requires 0 <= i < a.length

ensures result = select(a.elts,i)

val set (ref a:array ’a) (i:int) (v:’a) : unit

requires 0 <= i < a.length

writes a

ensures a.length = a@Old.length /\

a.elts = store(a@Old.elts,i,v)

I a[i] interpreted as a call to get(a,i)

I a[i] <- v interpreted as a call to set(a,i,v)

Example: Swap again

val ref a: array int

let swap(i:int,j:int)

requires 0 <= i < a.length /\ 0 <= j < a.length

writes a

ensures select(a.elts,i) = select(a@Old.elts,j) /\

select(a.elts,j) = select(a@Old.elts,i) /\

forall k:int. 0 <= k < a.length /\ k <> i /\ k <> j ->

select(a.elts,k) = select(a@Old.elts,k)

body

let tmp = get(a,i) in (* tmp <-a[i]*)

set(a,i,get(a,j)); (* a[i]<-a[j]*)

set(a,j,tmp) (* a[j]<-tmp *)

Note about Arrays in Why3

use array.Array

syntax: a.length, a[i], a[i]<-v

Example: swap

val a: array int

let swap (i:int) (j:int)

requires { 0 <= i < a.length /\ 0 <= j < a.length }

writes { a }

ensures { a[i] = old a[j] /\ a[j] = old a[i]}

ensures { forall k:int.

0 <= k < a.length /\ k <> i /\ k <> j ->

a[k] = old a[k] }

=

let tmp = a[i] in a[i] <- a[j]; a[j] <- tmp

Exercises on Arrays

I Prove Swap by computing the WP
I Using WP, prove the program

let test()

requires

select(a,0) = 13 /\ select(a,1) = 42 /\

select(a,2) = 64

ensures

select(a,0) = 64 /\ select(a,1) = 42 /\

select(a,2) = 13

body

swap(0,2)

Exercise on Arrays: incrementation

I Specify, implement, and prove a program that increments
by 1 all cells, between given indices i and j , of an array of
reals

See file array_incr.mlw

Exercise: Search Algorithms

var a: array real

let search(n:int, v:real): int

requires 0 <= n

ensures { ? }

= ?

1. Formalize postcondition: if v occurs in a, between 0 and
n − 1, then result is an index where v occurs, otherwise
result is set to −1

2. Implement and prove linear search:
res <- − 1;
for each i from 0 to n − 1: if a[i] = v then res <- i ;
return res

See file lin_search.mlw

Home Work 4: Binary Search

low = 0; high = n − 1;
while low ≤ high:

let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m

See file bin_search.mlw

Home Work 5: “for” loops

Syntax: for i = e1 to e2 do e
Typing:
I i visible only in e, and is immutable
I e1 and e2 must be of type int, e must be of type unit

Operational semantics:
(assuming e1 and e2 are values v1 and v2)

v1 > v2

Σ, π, for i = v1 to v2 do e Σ, π, ()

v1 ≤ v2

Σ, π, for i = v1 to v2 do e Σ, π,
(let i = v1 in e);
(for i = v1 + 1 to v2 do e)

array_incr.mlw
lin_search.mlw
bin_search.mlw

Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

{?}e{?}
{?}for i = v1 to v2 do e{?}

Propose a rule for computing the WP:

WP(for i = v1 to v2 invariant I do e,Q) =?

That’s all for today, Merry Christmas !

I Next lecture on January 3th
I Several home work exercises to do

	Syntax extensions
	Labels
	Local Mutable Variables
	Functions and Functions Calls

	Termination, Variants
	Advanced Modeling of Programs
	(First-Order) Logic as a Modeling Language
	Axiomatic Definitions

	Programs on Arrays

