Ghost Code, Lemma Functions More Data Types (lists, trees) Handling Exceptions Computer Arithmetic

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

January 10th, 2023

Outline

Reminders, Solutions to Exercises
Reminder: Function Calls
Reminder: Termination
Reminder: Programs on Arrays
Specification Language and Ghost Code
Ghost code
Ghost Functions
Lemma functions
Modeling Continued: Specifying More Data Types
Sum Types
Lists
Exceptions
Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays
 Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions
 Modeling Continued: Specifying More Data Types
 Sum Types
 Lists
 Exceptions
 Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations

Function Calls

let $f\left(x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right): \tau$
requires Pre
writes \vec{W}
ensures Post body Body

$$
\left.\left.\begin{array}{l}
\mathrm{WP}\left(f\left(t_{1}, \ldots, t_{n}\right), Q\right)=\operatorname{Pre}\left[x_{i} \leftarrow t_{i}\right] \wedge \\
\quad \forall \vec{v},\left(\operatorname { P o s t } \left[x_{i} \leftarrow t_{i}, w_{j} \leftarrow v_{j}, w_{j} @ O l d\right.\right. \\
\end{array} w_{j}\right] \rightarrow Q\left[w_{j} \leftarrow v_{j}\right]\right) \text {. }
$$

Modular proof
When calling function f, only the contract of f is visible, not its body

Soundness Theorem for a Complete Program

Assuming that for each function defined as

```
let }f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):
    requires Pre
    writes \vec{W}
    ensures Post
    body Body
```

we have

- variables assigned in Body belong to \vec{w},
$-\models$ Pre \rightarrow WP(Body, Post $)\left[w_{i}\right.$ @Old $\left.\leftarrow w_{i}\right]$ holds, then for any formula Q and any expression e, if $\Sigma, \pi \models \mathrm{WP}(e, Q)$ then execution of Σ, π, e is safe

Remark: (mutually) recursive functions are allowed

Termination

- Loop variant
- Variants for (mutually) recursive function(s)

Home Work: McCarthy’s 91 Function

$$
f 91(n)=\text { if } n \leq 100 \text { then } f 91(f 91(n+11)) \text { else } n-10
$$

Find adequate specifications

```
let f91(n:int): int
    requires ?
    variant ?
    writes ?
    ensures ?
body
    if n <= 100 then f91(f91(n + 11)) else n - 10
```

Use canvas file mccarthy .mlw

Programs on Arrays

- applicative maps as a built-in theory
- array $=$ record (length, pure map)
- handling of out-of-bounds index check

```
type array 'a = { length : int; elts : int -> 'a}
val get (ref a:array 'a) (i:int) : 'a
    requires 0 <= i < a.length
    ensures result = select(a.elts,i)
val set (ref a:array 'a) (i:int) (v:'a) : unit
    requires 0 <= i < a.length
    writes a
    ensures a.length = a@0ld.length /\
        a.elts = store(a@0ld.elts,i,v)
```

- a[i] interpreted as a call to get (a,i)
- a[i] <- vinterpreted as a call to set(a,i,v)

Home Work: Search Algorithms

```
var a: array int
let search(v:int): int
    requires 0 <= a.length
    ensures { ? }
= ?
```

1. Formalize postcondition: if v occurs in a, between 0 and a. length -1 , then result is an index where v occurs, otherwise result is set to -1
2. Implement and prove linear search:
$r e s \leftarrow-1$;
for each i from 0 to a.length -1 : if $a[i]=v$ then $r e s \leftarrow i$; return res

See file lin_search.mlw

Home Work: Binary Search

low $=0$; high $=$ a.length -1 ;
while low \leq high:
let m be the middle of low and high
if $a[m]=v$ then return m
if $a[m]<v$ then continue search between m and high
if $a[m]>v$ then continue search between low and m
See file bin_search.mlw

Home Work: "for" loops

Syntax: for $i=e_{1}$ to e_{2} do e
Typing:

- i visible only in e, and is immutable
- e_{1} and e_{2} must be of type int, e must be of type unit

Operational semantics: (assuming e_{1} and e_{2} are values v_{1} and v_{2})

$$
\frac{v_{1}>v_{2}}{\Sigma, \pi, \text { for } i=v_{1} \text { to } v_{2} \text { do } e \rightsquigarrow \Sigma, \pi,()}
$$

$v_{1} \leq v_{2}$
Σ, π, for $i=v_{1}$ to v_{2} do $e \rightsquigarrow \Sigma, \pi, \quad\left(\right.$ let $i=v_{1}$ in $\left.e\right)$;
(for $i=v_{1}+1$ to v_{2} do e)

Home Work: "for" loops

Propose a Hoare logic rule for the for loop:

$$
\frac{\{?\} e\{?\}}{\{?\} \text { for } i=v_{1} \text { to } v_{2} \text { do } e\{?\}}
$$

Propose a rule for computing the WP:

$$
\mathrm{WP}\left(\text { for } i=v_{1} \text { to } v_{2} \text { invariant } / \text { do } e, Q\right)=\text { ? }
$$

Home Work: "for" loops

Notice: loop invariant / typically has i as a free variable Informal vision of execution, stating when invariant is supposed to hold and for which value of i :

```
\(\{I[i \leftarrow v 1]\}\)
\(i \leftarrow v 1\)
\{/\}
e
\(\{[i \leftarrow i+1]\}\)
\(i \leftarrow i+1\)
\(\{I\}\)
e
\(\{I\}\)
e
\(\{![i \leftarrow i+1]\}\)
\(i \leftarrow i+1\)
(* assuming now \(i=v 2\), last iteration *)
\(\{I\}\) (* where \(i=v 2{ }^{*}\) )
e
\(\{I[i \leftarrow i+1]\}\) (* and still \(\mathrm{i}=\mathrm{v} 2\), hence *)
\(\{I[i \leftarrow v 2+1]\}\)
```


Home Work: "for" loops

So we deduce the Hoare logic rule

$$
\frac{\left\{I \wedge v_{1} \leq i \leq v_{2}\right\} e\{l[i \leftarrow i+1]\}}{\left\{I\left[i \leftarrow v_{1}\right] \wedge v_{1} \leq v_{2}\right\} \text { for } i=v_{1} \text { to } v_{2} \text { do } e\left\{l\left[i \leftarrow v_{2}+1\right]\right\}}
$$

Remark

Some rule should be stated for case $v_{1}>v_{2}$, left as exercise
and then a rule for computing the WP:

$$
\begin{aligned}
& \mathrm{WP}\left(\text { for } i=v_{1} \text { to } v_{2} \text { invariant } I \text { do } e, Q\right)= \\
& v_{1} \leq v_{2} \wedge I\left[i \leftarrow v_{1}\right] \wedge \\
& \forall \vec{v},(\\
& \quad\left(\forall i, I \wedge v_{1} \leq i \leq v_{2} \rightarrow \mathrm{WP}(e, I[i \leftarrow i+1])\right) \wedge \\
& \left.\quad\left(I\left[i \leftarrow v_{2}+1\right] \rightarrow Q\right)\right)\left[w_{j} \leftarrow v_{j}\right]
\end{aligned}
$$

Additional exercise: use a for loop in the linear search example lin_search_for.mlw

Outline

```
Reminders, Solutions to Exercises
    Reminder: Function Calls
    Reminder: Termination
    Reminder: Programs on Arrays
Specification Language and Ghost Code Ghost code
    Ghost Functions
Lemma functions
Modeling Continued: Specifying More Data Types
Sum Types
Lists
Exceptions
Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations
```


(Why3) Logic Language (reminder)

- (First-order) logic, built-in arithmetic (integers and reals)
- Definitions à la ML
- logic (i.e. pure) functions, predicates
- structured types, pattern-matching (to be seen in this lecture)
- type polymorphism à la ML
- higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (not detailed here)

Important note

Logic functions and predicates are always totally defined

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
q<- 0; r <- x;
while r >= y do
    invariant { x = q * y + r }
    r<- r - y; q <- q + 1
```


Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
    r <- x;
while \(r>=y\) do
    invariant \{ exists \(q \cdot x=q * y+r\}\)
    \(r<-r-y ;\)
```

(See Why3 file euclidean_rem.mlw)

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
\(q<-0 ; r<-x\);
    while \(r>=y\) do
        invariant \(\{x=q * y+r\}\)
        \(r<-r-y ; q<-q+1\)
```


Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
\(q<-0 ; r<-x\);
    while \(r>=y\) do
    invariant \(\{x=q * y+r\}\)
    \(r<-r-y ; q<-q+1\)
```

Ghost code, ghost variables

- Cannot interfere with regular code (checked by typing)
- Visible only in annotations

See also euclidean_rem_with_ghost.mlw

Home Work: Bézout coefficients

- Extend the post-condition of Euclid's algorithm for GCD to express the Bézout property:

$$
\exists a, b, \text { result }=x * a+y * b
$$

- Prove the program by adding appropriate ghost local variables

Use canvas file exo_bezout.mlw

More Ghosts: Programs turned into Logic Functions

If the program f is

- Proved terminating
- Has no side effects

```
let }f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):
    requires Pre
    variant var,\prec
    ensures Post
    body Body
```

then there exists a logic function:
function $f \tau_{1} \ldots \tau_{n}: \tau$
lemma $f_{\text {spec }}: \forall x_{1}, \ldots, x_{n}$. Pre \rightarrow Post[result $\left.\leftarrow f\left(x_{1}, \ldots, x_{n}\right)\right]$
and if Body is a pure term then
lemma $f_{\text {body }}: \forall x_{1}, \ldots, x_{n}$. Pre $\rightarrow f\left(x_{1}, \ldots, x_{n}\right)=$ Body
Offers an important alternative to axiomatic definitions In Why3: done using keywords let function

Example: axiom-free specification of factorial

```
let function fact (n:int) : int
    requires { n >= 0 }
    variant { n }
= if n=0 then 1 else n * fact(n-1)
```

generates the logic context

```
function fact int : int
axiom f_body: forall n. n >= 0 ->
    fact n = if n=0 then 1 else n * fact(n-1)
```


Example of Factorial

Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```
let fact_imp (x:int): int
```

 requires ?
 ensures ?
 body
let ref $\mathrm{y}=0$ in
let ref res = 1 in
while $\mathrm{y}<\mathrm{x}$ do
y <- y + 1;
res <- res * y
done;
res

See file fact.mlw

More Ghosts: Lemma functions

- if a program function is without side effects and terminating:

```
let f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):\mathrm{ unit}
    requires Pre
    variant var,\prec
    ensures Post
    body Body
then it is a proof of
```

$$
\forall x_{1}, \ldots, x_{n} . \text { Pre } \rightarrow \text { Post }
$$

- If f is recursive, it simulates a proof by induction

Example: sum of odds

```
function sum_of_odd_numbers int : int
(** 'sum_of_odd_numbers n' denote the sum of
    odd numbers from '1' to '2n-1' *)
axiom sum_of_odd_numbers_base : sum_of_odd_numbers 0 = 0
axiom sum_of_odd_numbers_rec : forall n. n >= 1 ->
    sum_of_odd_numbers n = sum_of_odd_numbers (n-1) + 2*n-1
goal sum_of_odd_numbers_any:
    forall n. n >= 0 -> sum_of_odd_numbers n = n * n
```

See file arith_lemma_function.mlw

Example: sum of odds as lemma function

```
let rec lemma sum_of_odd_numbers_any (n:int)
    requires { n >= 0 }
    variant { n }
    ensures { sum_of_odd_numbers n = n * n }
    = if n > 0 then sum_of_odd_numbers_any (n-1)
```


Home work

Prove the helper lemmas stated for the fast exponentiation algorithm

See power_int_lemma_functions.mlw

Home Work

Prove Fermat's little theorem for case $p=3$:

$$
\forall x, \exists y \cdot x^{3}-x=3 y
$$

using a lemma function
See little_fermat_3.mlw

Outline

```
Reminders, Solutions to Exercises
    Reminder: Function Calls
    Reminder: Termination
    Reminder: Programs on Arrays
Specification Language and Ghost Code
    Ghost code
    Ghost Functions
    Lemma functions
```

Modeling Continued: Specifying More Data Types Sum Types Lists

Exceptions
Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Sum Types

- Sum types à la ML:
type t=
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$
$\left\lvert\, \begin{aligned} & \vdots \\ & C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}\end{aligned}\right.$

Sum Types

- Sum types à la ML:
type t =
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$
$C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}$
- Pattern-matching with match e with

$$
\begin{aligned}
& \mid C_{1}\left(p_{1}, \cdots, p_{n_{1}}\right) \rightarrow e_{1} \\
& \vdots \\
& \mid C_{k}\left(p_{1}, \cdots, p_{n_{k}}\right) \rightarrow e_{k} \\
& \text { end }
\end{aligned}
$$

Sum Types

- Sum types à la ML:
type $\mathrm{t}=$
$C_{1} \tau_{1,1} \cdots \tau_{1, n_{1}}$
$C_{k} \tau_{k, 1} \cdots \tau_{k, n_{k}}$
- Pattern-matching with match e with
$\mid C_{1}\left(p_{1}, \cdots, p_{n_{1}}\right) \rightarrow e_{1}$
|
$\mid C_{k}\left(p_{1}, \cdots, p_{n_{k}}\right) \rightarrow e_{k}$ end
- Extended pattern-matching, wildcard:

Recursive Sum Types

- Sum types can be recursive.
- Recursive definitions of functions or predicates
- Must terminate (only total functions in the logic)
- In practice in Why3: recursive calls only allowed on structurally smaller arguments.

Sum Types: Example of Lists

```
type list 'a = Nil | Cons 'a (list 'a)
function append(l1:list 'a,l2:list 'a): list 'a =
    match ll with
    | Nil -> l2
    | Cons(x,l) -> Cons(x, append(l,l2))
    end
function length(l:list 'a): int =
    match l with
    | Nil -> 0
    | Cons(_,r) -> 1 + length r
    end
function rev(l:list 'a): list 'a =
    match l with
    | Nil -> Nil
    | Cons(x,r) -> append(rev(r), Cons(x,Nil))
    end
```


Example: Efficient List Reversal

Exercise: fill the holes below.

```
val ref l: list int
let rev_append(r:list int)
    variant ? writes ? ensures ?
body
    match r with
    | Nil -> ()
    | Cons(x,r) -> l <- Cons(x,l); rev_append(r)
    end
let reverse(r:list int)
    writes l ensures l = rev r
body ?
```

See rev.mlw

Binary Trees

```
type tree 'a = Leaf | Node (tree 'a) 'a (tree 'a)
```

Home work: specify, implement, and prove a procedure returning the maximum of a tree of integers.
(problem 2 of the FoVeOOS verification competition in 2011, http://foveoos2011.cost-ic0701.org/verification-competition)

Outline

Reminders, Solutions to Exercises

Reminder: Function Calls
Reminder: Termination
Reminder: Programs on Arrays
Specification Language and Ghost Code
Ghost code
Ghost Functions
Lemma functions
Modeling Continued: Specifying More Data Types
Sum Types
Lists

Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Exceptions

We extend the syntax of expressions with

```
e ::= raise exn
    | try e with exn }->\mathrm{ e
```

with exn a set of exception identifiers, declared as exception exn <type>

Remark: <type> can be omitted if it is unit
Example: linear search revisited in lin_search_exc.mlw

Operational Semantics

- Values (i.e. expressions that do not reduce): now either constants v or raise exn
- Context rules Assuming that sub-expressions are introduced with "let", e.g. $e_{1}+e_{2}$ written as

$$
\text { let } v_{1}=e_{1} \text { in let } v_{2}=e_{2} \text { in } v_{1}+v_{2}
$$

then context rules are essentially given by the propagation of thrown exceptions inside "let":

$$
\Sigma, \pi,(\text { let } x=\text { raise exn in } e) \rightsquigarrow \Sigma, \pi, \text { raise exn }
$$

Operational Semantics: main rules

- Reduction of try-with:

$$
\frac{\Sigma, \pi, e \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e^{\prime}}{\Sigma, \pi,\left(\text { try e with exn } \rightarrow e^{\prime \prime}\right) \rightsquigarrow \Sigma^{\prime}, \pi^{\prime},\left(\text { try } e^{\prime} \text { with exn } \rightarrow e^{\prime \prime}\right)}
$$

Operational Semantics: main rules

- Reduction of try-with:

$$
\frac{\Sigma, \pi, e \rightsquigarrow \Sigma^{\prime}, \pi^{\prime}, e^{\prime}}{\Sigma, \pi,\left(\text { try e with exn } \rightarrow e^{\prime \prime}\right) \rightsquigarrow \Sigma^{\prime}, \pi^{\prime},\left(\text { try } e^{\prime} \text { with exn } \rightarrow e^{\prime \prime}\right)}
$$

- Normal execution:

$$
\Sigma, \pi,\left(\operatorname{try} v \text { with exn } \rightarrow e^{\prime}\right) \rightsquigarrow \Sigma, \pi, v
$$

- Exception handling:

$$
\begin{gathered}
\Sigma, \pi,(\text { try raise exn with exn } \rightarrow e) \rightsquigarrow \Sigma, \pi, e \\
\frac{\text { exn } \neq e^{\prime} n^{\prime}}{\Sigma, \pi,(\text { try raise exn with exn' } \rightarrow e) \rightsquigarrow \Sigma, \pi, \text { raise exn }}
\end{gathered}
$$

WP Rules

Function WP modified to allow exceptional post-conditions too:

$$
\mathrm{WP}\left(e, Q, e x n_{i} \rightarrow R_{i}\right)
$$

Implicitly, $R_{k}=$ False for any exn $\notin\left\{e_{k}{ }_{i}\right\}$.

WP Rules

Function WP modified to allow exceptional post-conditions too:

$$
\mathrm{WP}\left(e, Q, e x n_{i} \rightarrow R_{i}\right)
$$

Implicitly, $R_{k}=$ False for any exn $\notin\left\{e_{k}\right\}$.
Extension of WP for simple expressions:

$$
\begin{gathered}
\mathrm{WP}\left(x<t, Q, \text { exn }_{i} \rightarrow R_{i}\right)=Q[\text { result } \leftarrow(), x \leftarrow t] \\
\mathrm{WP}\left(\text { assert } R, Q, \text { exn } n_{i} \rightarrow R_{i}\right)=R \wedge Q
\end{gathered}
$$

WP Rules

Extension of WP for composite expressions:

$$
\begin{aligned}
& \mathrm{WP}\left(\text { let } x=e_{1} \text { in } e_{2}, Q, \text { exn }_{i} \rightarrow R_{i}\right)= \\
& \left.\mathrm{WP}\left(e_{1}, \mathrm{WP}\left(e_{2}, Q, \text { exn }_{i} \rightarrow R_{i}\right) \text { result } \leftarrow x\right], \text { exn }_{i} \rightarrow R_{i}\right) \\
& \text { WP }\left(\text { if } t \text { then } e_{1} \text { else } e_{2}, Q, \text { exn } n_{i}\right)= \\
& \text { if } t \text { then } \operatorname{WP}\left(e_{1}, Q, e_{i} \rightarrow R_{i}\right) \\
& \text { else WP }\left(e_{2}, Q, \text { exn }_{i} \rightarrow R_{i}\right) \\
& \begin{aligned}
\text { WP }\left(\begin{array}{c}
\text { while } c \text { invariant } I \\
\text { do } e
\end{array}, Q, \text { exn }_{i} \rightarrow R_{i}\right)=I \wedge \forall \vec{v}, \\
\left(I \rightarrow \text { if } c \text { then } \operatorname{WP}\left(e, I, \text { exn }_{i} \rightarrow R_{i}\right) \text { else } Q\right)\left[w_{i} \leftarrow v_{i}\right]
\end{aligned} \\
& \text { where } w_{1}, \ldots, w_{k} \text { is the set of assigned variables in } \\
& e \text { and } v_{1}, \ldots, v_{k} \text { are fresh logic variables. }
\end{aligned}
$$

WP Rules

Exercise: propose rules for

$$
\mathrm{WP}\left(\text { raise exn, } Q, \text { exn }_{i} \rightarrow R_{i}\right)
$$

and

$$
\text { WP }\left(\text { try } e_{1} \text { with exn } \rightarrow e_{2}, Q, \text { exn }_{i} \rightarrow R_{i}\right)
$$

WP Rules

$\mathrm{WP}\left(\right.$ raise exn,Q, exn $\left._{i} \rightarrow R_{i}\right)=R_{k}$
$\mathrm{WP}\left(\left(\right.\right.$ try e_{1} with exn $\left.\rightarrow e_{2}\right), Q$, exn $\left.n_{i} \rightarrow R_{i}\right)=$

$$
\mathrm{WP}\left(e_{1}, Q,\left\{\begin{array}{l}
\text { exn } \rightarrow \mathrm{WP}\left(e_{2}, Q, \text { exn }_{i} \rightarrow R_{i}\right) \\
\text { exn }_{i} \backslash \operatorname{exn} \rightarrow R_{i}
\end{array}\right)\right.
$$

Functions Throwing Exceptions

Generalized contract:

```
val}f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):
    requires Pre
    writes \vec{W}
    ensures Post
    raises E E }->\mathrm{ Post1
    \vdots
    raises En }->\mp@subsup{\mathrm{ Postn}}{n}{
```

Extended WP rule for function call:

$$
\begin{gathered}
\mathrm{WP}\left(f\left(t_{1}, \ldots, t_{n}\right), Q, E_{k} \rightarrow R_{k}\right)=\operatorname{Pre}\left[x_{i} \leftarrow t_{i}\right] \wedge \forall \vec{v}, \\
\left(\operatorname{Post}\left[x_{i} \leftarrow t_{i}, w_{j} \leftarrow v_{j}\right] \rightarrow Q\left[w_{j} \leftarrow v_{j}\right]\right) \wedge \\
\wedge_{k}\left(\operatorname{Pos} t_{k}\left[x_{i} \leftarrow t_{i}, w_{j} \leftarrow v_{j}\right] \rightarrow R_{k}\left[w_{j} \leftarrow v_{j}\right]\right)
\end{gathered}
$$

Verification Conditions for programs

For each function defined with generalized contract

```
let f(\mp@subsup{x}{1}{}:\mp@subsup{\tau}{1}{},\ldots,\mp@subsup{x}{n}{}:\mp@subsup{\tau}{n}{}):\tau
    requires Pre
    writes \vec{W}
    ensures Post
    raises E 
    \vdots
    raises En }->\mp@subsup{\mathrm{ Postn}}{n}{
    body Body
```

we have to check

- Variables assigned in Body belong to \vec{W}
- Pre $\rightarrow \mathrm{WP}\left(\right.$ Body, Post, $E_{k} \rightarrow$ Post $\left._{k}\right)\left[w_{i} @\right.$ Old $\left.\leftarrow w_{i}\right]$ holds

Example: "Defensive" variant of ISQRT

```
exception NotSquare
let isqrt(x:int): int
    ensures result >= 0 /\ sqr(result) = x
    raises NotSquare -> forall n:int. sqr(n) <> x
body
    if x < 0 then raise NotSquare;
    let ref res = 0 in
    let ref sum = 1 in
    while sum <= x do
        res <- res + 1; sum <- sum + 2 * res + 1
    done;
    if sqr(res) <> x then raise NotSquare;
    res
```

See Why3 version in isqrt_exc.mlw

Home Work

- Implement and prove binary search using also a immediate exit:
low $=0$; high $=$ a.length -1 ;
while low \leq high:
let m be the middle of low and high
if $a[m]=v$ then return m
if $a[m]<v$ then continue search between m and high
if $a[m]>v$ then continue search between low and m
(see bin_search_exc.mlw)

Outline

```
Reminders, Solutions to Exercises
    Reminder: Function Calls
    Reminder: Termination
    Reminder: Programs on Arrays
Specification Language and Ghost Code
    Ghost code
    Ghost Functions
    Lemma functions
Modeling Continued: Specifying More Data Types
    Sum Types
    Lists
```


Exceptions

Application: Computer Arithmetic
Handling Machine Integers
Floating-Point Computations

Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
- $2147483647+1 \rightarrow-2147483648$
- $100000^{2} \rightarrow 1410065408$

Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
- $2147483647+1 \rightarrow-2147483648$
- $100000^{2} \rightarrow 1410065408$
- floating-point numbers (32-, 64-bit):
- overflows
- $2 \times 2 \times \cdots \times 2 \rightarrow+$ inf
- $1 / 0 \rightarrow-i n f$
- $0 / 0 \rightarrow \mathrm{NaN}$

Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
- $2147483647+1 \rightarrow-2147483648$
- $100000^{2} \rightarrow 1410065408$
- floating-point numbers (32-, 64-bit):
- overflows
- $2 \times 2 \times \cdots \times 2 \rightarrow+$ inf
- $1 / 0 \rightarrow-i n f$
- $\mathrm{O} / \mathrm{O} \rightarrow \mathrm{NaN}$
- rounding errors
$\begin{aligned} & \underbrace{0.1+0.1+\cdots+0.1}_{\begin{array}{l}\text { 10times } \\ \text { (because } 0.1 \rightarrow 0.1 \\ \text { 32-bit) }\end{array}}=1.0 \rightarrow \text { false } \\ & 0.10000001490116119384765625 \text { in }\end{aligned}$ 32-bit)
See also arith.c

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $\$ 500 \mathrm{M}$.

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $\$ 500 \mathrm{M}$.
- 2007, Excel displays 77.1×850 as 100000 .

Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

Internal clock ticks every 0.1 second.
Time is tracked by fixed-point arith.: $0.1 \simeq 209715 \cdot 2^{-24}$.
Cumulated skew after 24h: -0.08 s , distance: 160 m .
System was supposed to be rebooted periodically.

- 2007, Excel displays 77.1×850 as 100000 .

Bug in binary/decimal conversion.
Failing inputs: 12 FP numbers.
Probability to uncover them by random testing: 10^{-18}.

Integer overflow: example of Binary Search

- Google "Read All About It: Nearly All Binary Searches and Mergesorts are Broken"

```
let ref l = 0 in
let ref u = a.length - 1 in
while l <= u do
    let m = (l + u) / 2 in
```

I $+u$ may overflow with large arrays!

Goal

prove that a program is safe with respect to overflows

Target Type: int32

- 32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.
- If the mathematical result of an operation fits in that range, that is the computed result.
- Otherwise, an overflow occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.

Safety Checking

Idea: replace all arithmetic operations by abstract functions with preconditions. $x+y$ becomes int32_add (x, y).

```
val int32_add(x: int, \(y:\) int): int
    requires \(-2^{\wedge} 31<=x+y<2^{\wedge} 31\)
    ensures result \(=x+y\)
```

Unsatisfactory: range contraints of integer must be added explicitly everywhere

Safety Checking, Second Attempt

Idea:

- replace type int with an abstract type int32
- introduce a projection from int32 to int
- axiom about the range of projections of int32 elements
- replace all operations by abstract functions with preconditions

```
type int32
function to_int(x: int32): int
axiom bounded_int32:
    forall x: int32. -2^31 <= to_int(x) < 2^31
val int32_add(x: int32, y: int32): int32
    requires -2^31 <= to_int(x) + to_int(y) < 2^31
    ensures to_int(result) = to_int(x) + to_int(y)
```


Binary Search with overflow checking

See bin_search_int32.mlw

Binary Search with overflow checking

See bin_search_int32.mlw

Application

Used for translating mainstream programming language into Why3:

- From C to Why3: Frama-C, Jessie plug-in See bin_search.c
- From Java to Why3: Krakatoa
- From Ada to Why3: Spark2014

Floating-Point Arithmetic

- Limited range \Rightarrow exceptional behaviors.
- Limited precision \Rightarrow inaccurate results.

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum

sign s	biased exponent $e^{\prime}\left(w_{e}\right.$ bits)	mantissa m (w_{m} bits)

represents

Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1+w_{e}+w_{m}=32$, or 64 , or 128.
Bias: $2^{w_{e}-1}-1$. Precision: $p=w_{m}+1$.
A floating-point datum

sign s	biased exponent $e^{\prime}\left(w_{e}\right.$ bits)	mantissa m (w_{m} bits)

represents

- if $0<e^{\prime}<2^{w_{e}}-1$, the real $(-1)^{s} \cdot \overline{1 \cdot m^{\prime}} \cdot 2^{e^{\prime}-\text { bias }}, \quad$ normal
- if $e^{\prime}=0$,
- ± 0 if $m^{\prime}=0$,
- the real $(-1)^{s} \cdot \overline{0 . m^{\prime}} \cdot 2^{-b i a s+1}$ otherwise, subnormal
- if $e^{\prime}=2^{w_{e}}-1$,
- $(-1)^{s} \cdot \infty$ if $m^{\prime}=0$,
- Not-a-Number otherwise.

Floating-Point Data

$$
\begin{array}{cccc|}
\hline 1 & & 11000110 & \\
\hline s & & 10010011110000111000000 \\
\downarrow & & \downarrow & f \\
(-1)^{s} & \times & 2^{e-B} & \times \\
& & \downarrow \\
(-1)^{1} & \times & 2^{198-127} & \times 1.10010011110000111000000_{2} \\
& & -2^{54} \times 206727 \approx-3.7 \times 10^{21}
\end{array}
$$

Semantics for the Finite Case

IEEE-754 standard

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Rounding of a real number x :

Overflows are not considered when defining rounding: exponents are supposed to have no upper bound!

Specifications, main ideas

Same as with integers, we specify FP operations so that no overflow occurs.

```
constant max : real = 0x1.FFFFFEp127
predicate in_float32 (x:real) = abs x <= max
type float32
function to_real(x: float32): real
axiom float32_range: forall x: float32. in_float32 (to_real x)
```

function round32(x: real): real
(* ... axioms about round32 ... *)
function float32_add(x: float32, y: float32): float32
requires in_float32(round32(to_real x + to_real y))
ensures to_real result $=$ round32 (to_real $x+$ to_real y)

Specifications in practice

- Several possible rounding modes
- many axioms for round32, but incomplete anyway
- Specialized prover: Gappa http://gappa.gforge.inria.fr/

Demo: clock_drift.c

Deductive verification nowadays

More native support in SMT solvers:

- bitvectors supported by CVC4, Z3, others
- theory of floats supported by Z3, CVC4, MathSAT

Using such a support for deductive program verification remains an open research topic

- Issues when bitvectors/floats are mixed with other features: conversions, arrays, quantification

Fumex et al.(2016) C. Fumex, C. Dross, J. Gerlach, C. Marché. Specification and proof of high-level functional properties of bit-level programs. 8th NASA Formal Methods Symposium, LNCS 9690 Science
Boldo, Marché (2011) S. Boldo, C. Marché. Formal verification of numerical programs: from C annotated programs to mechanical proofs. Mathematics in Computer Science, 5:377-393

