
MPRI - Lecture 2-36-1 “Proof of Program” 2022-2023

Final exam, February 28, 2023

• Duration: 3 hours.

• Answers may be written in English or French.

• Please write your answers for Exercise 1 on a separate piece of paper.

• Lecture notes and personal notes are allowed. Mobile phones must be switched off.
Electronic notes are allowed, but all network connections must be switched off, and
the use of any electronic device must be restricted to reading notes: no typing, no using
proof-related software.

• There are 9 pages and 3 exercises. Exercise 1 is about verification using weakest preconditions.
Exercises 2 to 3 are about separation logic.

• Write your name, and page numbers under the form 1/7, 2/7, etc., on each piece of paper.

1 Counting Occurrences of Elements in an Array

In this exercise, we are interested in counting the occurrences of elements in an array. We start by
specifying a logic function occ which, given an element x, a function f and two integers i and j, denotes
the number of occurrences of x among f i, f (i+1), . . . , f (j-1). Notice than the first index i is
included in the count but not the last one j. It is defined as follows

let rec ghost function occ (x:int) (f:int Ñ int) (i j:int) : int

= if j <= i then 0 else (if f i = x then 1 else 0) + occ x f (i+1) j

Question 1.1. Which annotations (e.g. pre-conditions, invariants, etc.) should be given to the ghost
function above so as to be able to prove it safe and terminating? Justify informally (5 lines max) why
your annotations suffice.

Answer. To prove termination we need a variant, e.g.

variant { j - i }

No other annotations are needed for safety

The following program computes the number of occurrences in an array, with a while loop.

let count_occ (x:int) (a:array int) : int =

let ref n = 0 in let ref i = 0 in

while i < a.length do

if a[i] = x then n Ð n+1;

i Ð i + 1;

done;

n

Question 1.2. Which annotations should be given to the program above so as to be able to prove it safe
and terminating? Justify informally (10 lines max) why your annotations suffice.

Answer. To prove termination we need a variant, e.g.

variant { a.length - i }

To prove safety of the array access a[i] we need the invariant

invariant { 0 <= i }

which together with the loop condition, ensures that 0 <= i < a.length for the array access.

1

Question 1.3. We now express the expected behavior of the program count_occ by adding the post-
condition result = occ x a.elts 0 a.length. Which extra annotations are needed to prove it? If you
need an additional lemma to achieve the proof, state it clearly and explain how it can be proved (20 lines
max).

Answer. It is natural to add the loop invariant

invariant { n = occ x a.elts 0 i }

To obtain the proof of the post-condition, we need to show that i = a.length at the loop exit. This can
be achieved with an extra invariant i <= a.length. The initialization of the loop invariant is a trivial
consequence of the definition of occ. The preservation of the invariant amounts to prove that

occ x a.elts 0 (i+1) = (if a[i]=x then 1 else 0) + occ x a.elts 0 i

which is not trivial since the definition of occ is recursive on the first index, not the second. Such a result
can be obtained by a lemma provable by induction as follows

let rec lemma occ_from_right (x:int) (f:int Ñ int) (i j:int) : unit

requires { i <= j }

variant { j - i }

ensures { occ x f i (j+1) = (if f j = x then 1 else 0) + occ x f i j }

= if i < j then occ_from_right x f (i+1) j

We know consider the classical function for swapping two elements in an array as follows.

let swap (a:array int) (i j :int) : unit

requires { 0 <= i < j < a.length }

writes { a }

ensures { @ x:int. occ x (old a).elts 0 a.length = occ x a.elts 0 a.length }

= let tmp = a[i] in a[i] Ð a[j]; a[j] Ð tmp

Notice the specific post-condition expressing that the number of occurrences of elements in array a are
unchanged. Notice also that for simplicity we assume i < j.

Question 1.4. To achieve a proof of the post-condition of swap above, several lemmas should be proved
first. Identify what could be these lemmas. State them clearly with logic formulas, and explain why they
suffice to prove the post-condition. (20 lines max)

Answer. We can view the array as a sequence of five pieces: the segment between 0 and 𝑖 (excluded),
the element 𝑎r𝑖s itself, the segment between 𝑖 ` 1 and 𝑗 (excluded), the element 𝑎r𝑗s and the segment
between 𝑗 ` 1 and a.length. For any element 𝑥, the number of its occurrences in the three segments is
unchanged by the swap. This is indeed a frame property for the occ predicate, that could be stated as

let lemma occ_frame (f g:int Ñ int) (i j:int) (x:int) : unit

requires { @ k. i <= k < j Ñ f k = g k }

ensures { occ x f i j = occ x g i j }

Such a lemma suffices to prove that at the end of swap

@ x. occ x a.elts 0 i = occ x (old a).elts 0 i /\

occ x a.elts (i+1) j = occ x (old a).elts (i+1) j /\

occ x a.elts (j+1) a.length = occ x (old a).elts (j+1) a.length

This is not enough, we need to prove that the number of occurrences in the array is indeed the sum of
occurrences in each of the five parts. This can be expressed by a lemma on occurrences in a concatenation:

let lemma occ_append (x:int) (f:int Ñ int) (i j k : int) : unit

requires { i <= j <= k }

ensures { occ x f i k = occ x f i j + occ x f j k }

Question 1.5. Explain how the lemmas identified above can be proved correct. (20 lines max)

2

Answer. The frame property can be proved by a recursive lemma function

let rec lemma occ_frame (f g:int Ñ int) (i j:int) (x:int) : unit

requires { @ k. i <= k < j Ñ f k = g k }

variant { j - i }

ensures { occ x f i j = occ x g i j }

= if i < j then occ_frame f g (i+1) j x

The lemma on concatenation can be also proved by induction using

let rec lemma occ_append (x:int) (f:int Ñ int) (i j k : int) : unit

requires { i <= j <= k }

variant { j - i }

ensures { occ x f i k = occ x f i j + occ x f j k }

= if i < j then occ_append x f (i+1) j k

Note: the solutions above are syntactically accurate so as to be checked using Why3. Yet it is not
expected for students to provide a so precise answer, the general idea of lemma functions proved by
induction is enough.

2 Separation Logic: heap predicates

We recall the definition of a few separation logic connectives:

𝐻1 ^̂ 𝐻2 ” 𝜆𝑚. 𝐻1 𝑚 ^ 𝐻2 𝑚 𝑙 ÞÑ 𝑣 ” 𝜆𝑚. 𝑚 “ tp𝑙, 𝑣qu ^ 𝑙 ‰ null x𝑃 y ” 𝜆𝑚. 𝑚 “ H ^ 𝑃

𝐻1 __ 𝐻2 ” 𝜆𝑚. 𝐻1 𝑚 _ 𝐻2 𝑚 𝐻1 ˚ 𝐻2 ” 𝜆𝑚. D𝑚1𝑚2.𝑚 “ 𝑚1 Z 𝑚2 ^ 𝐻1 𝑚1 ^ 𝐻2 𝑚2

DD𝑥.𝐻 ” 𝜆𝑚.D𝑥.𝐻𝑚 GC ” 𝜆𝑚. True 𝐻1´̊ 𝐻2 ” 𝜆𝑚. @𝑚1 p𝑚1 K 𝑚 ^ 𝐻1 𝑚1q ñ 𝐻2p𝑚1 Z 𝑚q

𝑝⇝ MlistSeg 𝑞 nil ” x𝑝 “ 𝑞y 𝑝⇝ MlistSeg 𝑞 p𝑥 :: 𝐿1q ” DD𝑝1. 𝑝 ÞÑ t|hd=𝑥; tl=𝑝1|u ˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿1

𝑝⇝ Mlist𝐿 ” 𝑝⇝ MlistSeg null𝐿 𝑙 ÞÑ ” DD𝑣. 𝑙 ÞÑ 𝑣

Question 2.1. For each of the following heap predicates, say how many unique heaps satisfy it, and give
examples of such heaps when applicable. When there are several examples, provide a minimum of two.

1. 1 ÞÑ 1 ˚ 2 ÞÑ 2

2. 1 ÞÑ 1 ˚ GC

3. 1 ÞÑ 1 ^̂ p2 ÞÑ 2 ˚ GCq

4. p2 ÞÑ 2 __ 3 ÞÑ 3q ˚ p3 ÞÑ 3 __ 4 ÞÑ 4q

5. 1 ÞÑ 1 ´̊ p2 ÞÑ 2 ˚ 1 ÞÑ 1q

6. 1 ÞÑ 1 ´̊ 2 ÞÑ 2

7. p1 ÞÑ 1 ´̊ 2 ÞÑ 2q ˚ 1 ÞÑ 1

8. 𝑝⇝ MlistSeg 𝑞 r1s

9. 𝑝⇝ MlistSeg 𝑞 r1; 2s ^̂ 𝑟 ⇝ MlistSeg 𝑠 r2; 1s

Answer.

1. one: tp1, 1q, p2, 2qu

2. infinitely many, e.g., tp1, 1qu and tp1, 1q, p2, 2qu

3. zero

4. three: tp2, 2q, p3, 3qu, tp2, 2q, p4, 4qu, and tp3, 3q, p4, 4qu.

5. infinitely many: tp2, 2qu and any heap mapping 1, e.g., tp1, 3q, p4, 4qu

6. infinitely many: any heap mapping 1, e.g., tp1, 1qu, tp1, 3q, p4, 4qu

3

7. zero

8. one: tp𝑝, 1q, p𝑝 ` 1, 𝑞qu

9. one: tp𝑝, 1q, p𝑝 ` 1, 𝑟q, p𝑟, 2q, p𝑟 ` 1, 𝑝qu if 𝑝 “ 𝑞 and 𝑟 “ 𝑠, zero otherwise

Question 2.2. Derive, from the usual rule for assignment, the triple:

tp𝑝 ÞÑ q ˚ p𝑝 ÞÑ 𝑣 ´̊ 𝑃 qu 𝑝 := 𝑣 t𝑃 u

Answer. Using the usual rule for assignment, :=:

t𝑝 ÞÑ u 𝑝 := 𝑣 t𝑝 ÞÑ 𝑣u

then framing with 𝑝 ÞÑ 𝑣 ´̊ 𝑃 , we obtain:

t𝑝 ÞÑ ˚ p𝑝 ÞÑ 𝑣 ´̊ 𝑃 qu 𝑝 := 𝑣 t𝑝 ÞÑ 𝑣 ˚ p𝑝 ÞÑ 𝑣 ´̊ 𝑃 qu

we conclude using the consequence rule on the right, using the fact that 𝑝 ÞÑ 𝑣 ˚ p𝑝 ÞÑ 𝑣 ´̊ 𝑃 q Ź 𝑃.

Question 2.3. Show that entailment (1) below does not hold.

p𝑃 ˚ 𝑅q ^̂ p𝑄 ˚ 𝑅q Ź p𝑃 ^̂ 𝑄q ˚ 𝑅 (1)

Answer. Let 𝑃 “ 1 ÞÑ 1, 𝑄 “ 2 ÞÑ 2, and 𝑅 “ 𝑃 __ 𝑄. Both 𝑃 ˚ 𝑅 and 𝑄 ˚ 𝑅 are equivalent to 𝑃 ˚ 𝑄
and are satisfied by heap ℎ “ tp1, 1q, p2, 2qu. However 𝑃 ^̂ 𝑄 is always false, so heap ℎ satisfies the
left-hand side but not the right hand side.

Definition 1. A heap predicate 𝑃 is precise if, for all heap 𝑚, there is at most one sub-heap 𝑚1 Ď 𝑚
such that 𝑃𝑚1.

For example, 𝑙 ÞÑ 𝑣 is precise for all 𝑙 and 𝑣.

Question 2.4. Is 𝑙 ÞÑ precise? Is xTruey precise? Is xFalsey? Is DD𝑙. 𝑙 ÞÑ 𝑣? Is GC?

Answer. Yes. Yes and yes, x𝑃 y is always precise. DD𝑙. 𝑙 ÞÑ 𝑣 and GC are not.

Question 2.5. Name a few other precise predicates, and then a few other non-precise predicates.

Answer. 1 ÞÑ 1 ˚ 2 ÞÑ 2, 𝑝⇝ Array 𝐿, and 𝑝⇝ MTree 𝑇 are precise, as well as their (separating or not)
conjunctions. 1 ÞÑ 1 __ 2 ÞÑ 2 and 1 ÞÑ 1 ´̊ 𝑄 are not precise, and neither is GC ˚ 𝑃 except if 𝑃 Ź False.

Question 2.6. Show that when 𝑃 and 𝑄 are precise, then 𝑃 ˚ 𝑄 is precise.

Answer. Let ℎ and ℎ1, ℎ2 Ď ℎ that both satisfy 𝑃 ˚ 𝑄. Then there are 𝑝𝑖, 𝑞𝑖 such that 𝑝𝑖 Z 𝑞𝑖 “ ℎ𝑖,
𝑃 𝑝𝑖, and 𝑄 𝑞𝑖 for 𝑖 P t1, 2u. Since 𝑝𝑖 Ď ℎ𝑖 and ℎ𝑖 Ď ℎ, both 𝑝1 and 𝑝2 are subsets of ℎ and satisfy 𝑃 , so
𝑝1 “ 𝑝2. Similarly 𝑞1 “ 𝑞2, so ℎ1 “ ℎ2 and 𝑃 ˚ 𝑄 is precise.

Question 2.7. Complete the affirmation: if 𝑃 Ź 𝑄 and ... is precise, then ... is precise. Justify.

Answer. If 𝑃 Ź 𝑄 and 𝑄 is precise, then 𝑃 is precise. Indeed suppose ℎ1, ℎ2 Ď ℎ such that 𝑃ℎ1 and
𝑃ℎ2, it is enough to show ℎ1 “ ℎ2, and so it is also enough to show 𝑄ℎ1 and 𝑄ℎ2 since 𝑄 is precise, and
both hold because 𝑃 Ź 𝑄.

Question 2.8. Show that entailment (1) holds when 𝑅 is precise.

Answer. Suppose pp𝑃 ˚ 𝑅q ^̂ p𝑄 ˚ 𝑅qqℎ, then p𝑃 ˚ 𝑅qℎ and p𝑄 ˚ 𝑅qℎ, then ℎ “ 𝑝 Z 𝑟1 “ 𝑞 Z 𝑟2 with
𝑃𝑝 and 𝑄𝑞 with 𝑟1 and 𝑟2 both satisfying 𝑅 and sub-heaps of ℎ, so 𝑟1 “ 𝑟2. So, 𝑝 “ ℎz𝑟1 “ ℎz𝑟2 “ 𝑞, so
𝑃𝑞 and so p𝑃 ^̂ 𝑄q𝑝, and so 𝑝 Z 𝑟1 “ ℎ satisfies p𝑃 ^̂ 𝑄q ˚ 𝑅.

Question 2.9. Show that for all 𝑝 and 𝐿, the predicate 𝑝⇝ Mlist 𝐿 is precise.

4

Answer. Follows from Questions 2.7 and 2.10.

Question 2.10. Show that for all 𝑝, the predicate DD𝐿. 𝑝⇝ Mlist 𝐿 is precise.

Answer. Fix some heap ℎ. For any 𝑝 we write ℎ𝑝 for tp𝑝, ℎp𝑝qq, p𝑝` 1, ℎp𝑝` 1qqu. We define the relation
𝑞 Ñ 𝑟 whenever 𝑞 ‰ null, ℎp𝑞 ` 1q is defined and ℎp𝑞 ` 1q “ 𝑟. Let ℎ˚p𝑝q “

Ť

tℎ𝑞 | 𝑝 Ñ˚ 𝑞u.

We show by induction on the size of ℎ1, that for all ℎ1, 𝑝 and 𝐿, if p𝑝 ⇝ Mlist 𝐿qℎ1 and ℎ1 Ď ℎ, then
ℎ1 “ ℎ˚p𝑝q (which means that ℎ1 is unique and finally that DD𝐿. 𝑝⇝ Mlist 𝐿 is precise).

If 𝑝 “ null then 𝐿 “ nil and ℎ1 “ H “ ℎ˚pnullq. Otherwise, 𝐿 “ 𝑥 :: 𝐿1 for some 𝑥 and 𝐿1, and for some
𝑝1 we have ℎ1 “ ℎ1 Z ℎ2, such that:

1. p𝑝 ⇝ t|𝑥; 𝑝1|uqpℎ1q. This means that ℎ1 “ tp𝑝, 𝑥q, p𝑝 ` 1, 𝑝1qu and ℎ1 Ď ℎ1 Ď ℎ, so 𝑥 “ ℎp𝑝q,
𝑝1 “ ℎp𝑝 ` 1q, hence ℎ1 “ ℎ𝑝 and 𝑝 Ñ 𝑝1.

2. p𝑝1 ⇝ Mlist 𝐿1qpℎ2q. Since ℎ2 Ď ℎ1 Ď ℎ and |ℎ2| “ |ℎ1zℎ1| ă |ℎ1| we know by induction ℎ2 “ ℎ˚p𝑝1q.

Finally, since 𝑝 Ñ 𝑝1 and Ñ is deterministic, ℎ˚p𝑝q “ ℎ𝑝 Y ℎ˚p𝑝1q “ ℎ1 Y ℎ2 “ ℎ1.

3 Separation Logic: adjacency lists

Recall that list cells are records with mutable fields hd and tl:

type ’a cell = { mutable hd : ’a; mutable tl : ’a cell }

We desire a function mconcat : ’a cell cell -> ’a cell that returns a mutable list containing the
concatenation of all the mutable lists contained in its argument. In other words, it should have the
following specification:

@𝑝𝐿 t𝑝⇝ Mlistof Mlist 𝐿u mconcat 𝑝 t𝜆𝑝1.𝑝1 ⇝ Mlistpconcat 𝐿qu (2)

where concat nil ” nil and concat pX :: Lq ” X `̀ concat 𝐿, where 𝑋 is a list and 𝐿 is a list of lists, and
`̀ is the usual concatenation of two lists. To save up on memory, we want to make as few allocations as
possible.

Question 3.1. Give an implementation of mconcat that reuses the list cells of its argument so as to never
allocate any new cell. Prove that your implementation satisfies specification (2).

Answer.

let rec plug p q = if p.tl = null then p.tl <- q else plug p.tl q

let mappend p q = if p = null then q else (plug p q; p)

let rec mconcat p = if p = null then null else mappend p.hd (mconcat p.tl)

For all 𝑞 and 𝐿1 we prove, by induction on 𝐿, that

@𝑝, 𝐿 ‰ nil ñ t𝑝⇝ Mlistof 𝐿 ˚ 𝑞 ⇝ Mlistof 𝐿1u plug 𝑝 𝑞 t𝜆 , 𝑝⇝ Mlistof p𝐿`̀ 𝐿1qu

In the case 𝐿 “ 𝑥 :: nil, the assignment changes 𝑝 ⇝ t|𝑥, null|u to 𝑝 ⇝ t|𝑥, q|u, which joins with 𝑞 ⇝
Mlistof 𝐿1 to make 𝑝⇝ Mlistof p𝑥 :: 𝐿1q. In the induction case, we frame 𝑝⇝ t|𝑥, 𝑝1|u and conclude with
the I.H. with 𝑝1 and 𝐿1.
A simple case analysis on 𝐿 is required for

@𝑝𝑞𝐿𝐿1, t𝑝⇝ Mlistof 𝐿 ˚ 𝑞 ⇝ Mlistof 𝐿1u mappend 𝑝 𝑞 t𝜆𝑟, 𝑟 ⇝ Mlistof p𝐿`̀ 𝐿1qu

as when 𝐿 “ nil, we return 𝑞, and otherwise we call plug and return 𝑝 as 𝑟.
We show (2), for all 𝑝, by induction on the list of lists 𝐿. The case nil is immediate. The case 𝐿 “ 𝑋 :: 𝐿1

unfolds to, for some 𝑥 and 𝑝1,

t𝑝⇝ t|𝑥, 𝑝1|u ˚ 𝑥⇝ Mlist𝑋 ˚ 𝑝1 ⇝ Mlistof Mlist 𝐿1u mappend 𝑥 pmconcat 𝑝1q t𝜆𝑟.𝑟 ⇝ Mlistp𝑋 `̀ concat 𝐿1qu

by induction and framing everything except 𝑝1 ⇝ ..., we get some 𝑟1 such that we need to prove:

t𝑝⇝ t|𝑥, 𝑝1|u ˚ 𝑥⇝ Mlist 𝑋 ˚ 𝑟1 ⇝ Mlistpconcat 𝐿1qu mappend 𝑥 𝑟1 t𝜆𝑟.𝑟 ⇝ Mlistp𝑋 `̀ concat 𝐿1qu

framing then garbage-collecting 𝑝⇝ ..., this is an instance of the specification of mappend.

Consider graphs of the form 𝐺 “ p𝑉,𝐸q with a set 𝑉 of 𝑛 nodes of the form 𝑉 “ t0, 1, . . . , 𝑛 ´ 1u and a
set of edges 𝐸 Ď 𝑉 ˆ 𝑉 . We represent a graph by a record of its size 𝑛 and an array of (non-necessarily
sorted) mutable adjacency lists, i.e. p𝑖, 𝑗q P 𝐸 if 𝑗 is present in the list at index 𝑖.

5

type graph = { size : int; adj : int cell array }

For example, the graph 𝐺1 “ pt0, 1, 2, 3, 4u, tp0, 1q, p0, 3q, p1, 3q, p3, 1q, p3, 2q, p3, 3quq can be represented as:

let l0 = { hd = 3; tl = { hd = 1; tl = null } }

let l1 = { hd = 3; tl = null }

let l3 = { hd = 2; tl = { hd = 3; tl = { hd = 1; tl = null } } }

let g1 = { size = 5; adj = [| l0; l1; null; l3; null |] }

Question 3.2. Write a corresponding representation predicate 𝑔 ⇝ Graph𝐺.

Answer. Define ArrayOf as

𝑝⇝ ArrayOf 𝑅 𝐿 ” ˚
𝑖Pdom𝐿

DD𝑣. 𝑝 ` 𝑖 ÞÑ 𝑣 ˚ 𝑣 ⇝ 𝑅 𝐿r𝑖s

and let repr 𝑉 𝐸 𝐿 be @p𝑖, 𝑗q P 𝑉 2, p𝑖, 𝑗q P 𝐸 ô 𝑗 P 𝐿r𝑖s. Then, 𝑔 ⇝ Graph p𝑉,𝐸q is defined as

DD𝑝 : loc, 𝐿 : listplistpintqq. 𝑔 ⇝ t|size=|𝑉 |, adj=𝑝|u ˚ 𝑝⇝ ArrayOf Mlist𝐿 ˚ xrepr 𝑉 𝐸 𝐿y

Question 3.3. Is it precise, in the sense of Definition 1?

Answer. Yes, it is precise (even if there are several representations of the same graph).

The relational composition of two sets of edges 𝐸1 and 𝐸2 on the same set of nodes 𝑉 is defined as
𝐸1 ˆ 𝐸2 ” tp𝑖, 𝑘q P 𝑉 2 | p𝑖, 𝑗q P 𝐸1 ^ p𝑗, 𝑘q P 𝐸2u. We would like to design a function of graph
composition graph_compose such that:

@𝑉 𝐸1 𝐸2 𝑔1 𝑔2 t𝑔1 ⇝ Graphp𝑉,𝐸1q ˚ 𝑔2 ⇝ Graphp𝑉,𝐸2qu

graph_compose 𝑔1 𝑔2
t𝜆𝑔, 𝑔1 ⇝ Graphp𝑉,𝐸1q ˚ 𝑔2 ⇝ Graphp𝑉,𝐸2q ˚ 𝑔 ⇝ Graphp𝑉,𝐸1 ˆ 𝐸2qu

(3)

A candidate function is:

let graph_compose g1 g2 =

assert (g1.size = g2.size);

{ size = g1.size;

adj = Array.map (fun p -> mconcat (mmap (fun j -> g2.adj.(j)) p)) g1.adj }

where mmap : (’a -> ’b) -> ’a cell -> ’b cell is a map function on mutable lists.

Question 3.4. Give an implementation and a specification of mmap so that the graph_compose function
behaves as expected (no proof required).

Answer. mmap must not reuse list cells and its precondition must appear in the postcondition, and not
e.g. reuse the structure of the list, otherwise it could modify the graph itself.

let rec mmap f p = if p = null then null else { hd = f p.hd; tl = mmap f p.tl }

Using the precondition where 𝑓 is characterized by a logical function 𝐹 , but still allowing to use some
invariant 𝐼, i.e. @𝑥t𝐼u 𝑓 𝑥 t𝜆𝑥1.𝐼 ˚ x𝑥1 “ 𝐹𝑥yu implies

t𝐼 ˚ 𝑝⇝ Mlist 𝐿u mmap 𝑓 𝑝 t𝜆𝑝1, 𝐼 ˚ 𝑝⇝ Mlist 𝐿 ˚ 𝑝1 ⇝ Mlistpmap 𝐹 𝐿qu

In fact, to really make graph_compose work without modifying mconcat, we would need to rather
awkwardly add a list copy after each operation 𝑓 , or alternatively to shadow the above definition with
let mmap f p = mmap mlist_copy (mmap f p). See the solution of Question 3.6 for more details.

Question 3.5. Give a limitation that specification (3) is suffering from. Suggest two ways of dealing
with this problem.

Answer. It forbids the case 𝑔1 “ 𝑔2. We can bypass the problem making a copy of the graph, or we
can overcome it by allowing fractional permissions for Graph (recursively including defining fractional
versions of ArrayOf and Mlist) so as to allow them in pre- and post-conditions of the specification.

6

Question 3.6. Give a sketch of the proof that graph_compose satisfies its specification.

Answer. Sadly graph_compose does not satisfy its specification since mconcat modifies the lists inside its
argument, which are adjacency lists that do need to be re-established in the postcondition. One way to
fix this problem is to add a mutable list copy function copy in the argument of mmap1. Another is to use
a non-destructive version of mconcat. The natural specification for mconcat would be

@𝑝𝐿 t𝑝⇝ Mlistof Mlist 𝐿u mconcat 𝑝 t𝜆𝑝1.𝑝⇝ Mlistof Mlist 𝐿 ˚ 𝑝1 ⇝ Mlistpconcat 𝐿qu

but that would not be enough, as this forbids sharing in the input structure2. We need instead

@𝑝𝐿𝐾𝑀, 𝐾 Ď domp𝑀q ñ t𝑝⇝ Mlist 𝐾 ˚ Cellsof Mlist 𝑀u mconcat 𝑝
t𝜆𝑝1.𝑝⇝ Mlist 𝐾 ˚ Cellsof Mlist 𝑀 ˚ 𝑝1 ⇝ Mlistpconcat pmap 𝑀 𝐾qqu

(4)

Let 𝑉,𝐸1, 𝐸2, 𝑔1, 𝑔2 be from the precondition. The 𝑉 is shared by all graphs, so the condition of the
assert evaluates to true and the record part about size holds trivially. We are left with proving, for all
𝑝1, 𝑝2, 𝐿1, 𝐿2 assuming that repr 𝑉 𝐸1 𝐿1 and repr 𝑉 𝐸2 𝐿2, and framing out parts about the size/adj
record, that

t𝑝1 ⇝ ArrayOf Mlist𝐿1 ˚ 𝑝2 ⇝ ArrayOf Mlist𝐿2u

Array.map (fun p Ñ mconcat (mmap (fun j Ñ 𝑝2.(j)) p)) 𝑝1
t𝜆𝑟.𝑝1 ⇝ ArrayOf Mlist𝐿1 ˚ 𝑝2 ⇝ ArrayOf Mlist𝐿2 ˚ 𝑟 ⇝ ArrayOf Mlist𝐿1 ˚ xrepr 𝑉 p𝐸1ˆ𝐸2q 𝐿1yu

(5)

for some 𝐿1 that we choose to reflect the structure of the program, i.e.

𝐿1 ” map 𝐹 𝐿1 where 𝐹𝑙 ” concat pmap 𝐹2 𝑙q and 𝐹2 ” 𝜆𝑗.𝐿2r𝑗s

We remark that repr 𝑉 p𝐸1 ˆ 𝐸2q 𝐿1. Indeed, @p𝑖, 𝑘q P 𝑉 2,

𝑘 P 𝐿1r𝑖s ô 𝑘 P concat pmap 𝐹2 𝐿1r𝑖sq

ô D𝑙, 𝑘 P 𝑙 ^ 𝑙 P map 𝐹2 𝐿1r𝑖s

ô D𝑙, 𝑘 P 𝑙 ^ D𝑗 P 𝐿1r𝑖s ^ 𝑙 “ 𝐿2r𝑗s

ô D𝑗, 𝑗 P 𝐿1r𝑖s ^ 𝑘 P 𝐿2r𝑗s

ô D𝑗, p𝑖, 𝑗q P 𝐸1 ^ p𝑗, 𝑘q P 𝐸2 since repr 𝑉 𝐸1 𝐿1 and repr 𝑉 𝐸2 𝐿2

ô p𝑖, 𝑘q P p𝐸1 ˆ 𝐸2q by definition of ˆ

We now prove (5) by using the following suitable rule for Array.map

@𝑓𝐹𝑅𝑆 p@𝑥𝑋 𝑋 P 𝐿 ñ t𝐼 ˚ 𝑥⇝ 𝑅𝑋u 𝑓 𝑥 t𝜆𝑥1.𝐼 ˚ 𝑥⇝ 𝑅𝑋 ˚ 𝑥1 ⇝ 𝑆p𝐹𝑋qu ñ

@𝐿𝑝 t𝐼 ˚ 𝑝⇝ ArrayOf 𝑅 𝐿u Array.map 𝑓 𝑝 t𝜆𝑟.𝐼 ˚ 𝑝⇝ ArrayOf 𝑅 𝐿 ˚ 𝑟 ⇝ ArrayOf 𝑆 pmap 𝐹 𝐿qu

by choosing 𝑝 “ 𝑝1, 𝐿 “ 𝐿1, 𝐹 “ 𝐹 , 𝑅 “ 𝑆 “ Mlist, and 𝐼 “ 𝑝2 ⇝ ArrayOf Mlist𝐿2. Note that 𝐼 is used
several times during the application of Array.map. We are left to prove the premise of the rule, for all 𝑝
and 𝑙 such that 𝑙 P 𝐿1,

t𝐼 ˚ 𝑝⇝ Mlist 𝑙u mconcat (mmap 𝑓2 𝑝) t𝜆𝑥1.𝐼 ˚ 𝑝⇝ Mlist 𝑙 ˚ 𝑥1 ⇝ Mlistp𝐹𝑙qu (6)

trying to prove 𝑓2 ” fun j Ñ 𝑝2.(j) by using 𝐹2 as its specification, we encounter the access problem
typical to higher-order representation predicates. So we unfold 𝐼 to get a plain Array:

𝐼 “ 𝑝2 ⇝ ArrayOf Mlist𝐿2 “ DD𝐾2. 𝑝2 ⇝ Array 𝐾2 ˚ x|𝐾2| “ |𝐿2|y ˚
𝑖Pdom𝐿2

𝐾2r𝑖s⇝ Mlist 𝐿2r𝑖s

we extract the existentially quantified 𝐾2 from the precondition (and instantiate it in the post), and we
let 𝑀 be the family p𝐾2r𝑖s, 𝐿2r𝑖sq𝑖Pdom𝐿2

, so that we can replace 𝐼 with 𝑝2 ⇝ Array 𝐾2 ˚ Cellsof Mlist 𝑀
in (6). Now, we can have a simple specification for 𝑓2:

@𝑗t𝑝2 ⇝ Array 𝐾2u 𝑓2 𝑗 t𝜆𝑥.x𝑥 “ 𝐾2r𝑗sy ˚ 𝑝2 ⇝ Array 𝐾2u

which results in the following triple when applying a rule for mmap:

t𝑝2 ⇝ Array 𝐾2 ˚ 𝑝⇝ Mlist 𝑙u mmap 𝑓2 𝑝 t𝜆𝑞.𝑝2 ⇝ Array 𝐾2 ˚ 𝑝⇝ Mlist 𝑙 ˚ 𝑞 ⇝ Mlist pmap 𝐾2 𝑙qu

1One could even modify mmap so that it copies its result as a mutable list, so that there is no need to change mconcat,
but this is making mmap do more than its name suggests

2Lists with sharing happen when there are duplicates in an adjacency list. Such duplicates could be prevented by our
definition of graph, but such a definition would be too restrictive since graph_compose itself can introduce duplicates.

7

by framing Cellsof Mlist 𝑀 the precondition coincides with (6)’s and the postcondition is

Cellsof Mlist 𝑀 ˚ 𝑝2 ⇝ Array 𝐾2 ˚ 𝑝⇝ Mlist 𝑙 ˚ 𝑞 ⇝ Mlist pmap 𝐾2 𝑙q

it remains to apply mconcat to 𝑞, so by applying (4) and framing 𝑝2 ⇝ Array 𝐾2 we get postcondition

t𝜆𝑥1.𝑝2 ⇝ Array 𝐾2 ˚ 𝑞 ⇝ Mlist pmap 𝐾2 𝑙q ˚ Cellsof Mlist 𝑀 ˚ 𝑥1 ⇝ Mlistpconcat pmap 𝑀 pmap 𝐾2 𝑙qqqu

which is (6)’s postcondition once we throw away 𝑞 ⇝ ... since

concat pmap 𝑀 pmap 𝐾2 𝑙qq

“ concat pmap p𝑀 ˝ 𝐾2q 𝑙q

“ concat pmap p𝜆𝑗.𝑀p𝐾2r𝑖sqq 𝑙q

“ concat pmap p𝜆𝑗.𝐿2r𝑖sq 𝑙q

“ concat pmap 𝐹2 𝑙q

“ 𝐹𝑙

Recall the rule for the parallel composition of two terms e1 and e2 (written e1 ||| e2), running in parallel
on different threads:

t𝑃1u e1 t𝜆 .𝑄1u t𝑃2u e2 t𝜆 .𝑄2u

t𝑃1 ˚ 𝑃2u e1 ||| e2 t𝜆 .𝑄1 ˚ 𝑄2u

Consider now the following function, where all_threads_busy () returns an unknown Boolean:

let rec par_iter (f : ’a -> unit) (p : ’a array) (i j : int) =

if i >= j or all_threads_busy () then

for k = i to j do f p.(k) done

else

let m = (i + j) / 2 in

par_iter f p i m |||

par_iter f p (m + 1) j

Question 3.7. Specify the function par_iter, so that it can be used on the array of adjacency lists for
graphs. Give a sketch of a proof of correctness (if you make an induction, at least provide its statement,
but it is not necessary to write out details for all steps).

Answer. One possibility, writing 𝑝 ÞÑ𝑖,𝑗 𝐿 for ˚𝑘Pt𝑖,...,𝑗u 𝑝 ` 𝑘 ÞÑ 𝐿r𝑘s and 𝑅p𝑖, 𝑗q for ˚𝑘Pt𝑖,...,𝑗u 𝑅 𝑘:

@𝑓 𝑅 𝑆 𝐿 𝑖 𝑗, 0 ď 𝑖 ď 𝑗 ă |𝐿| ñ p@𝑘 P t𝑖, . . . , 𝑗u, t𝑅 𝑘 ˚ x𝑥 “ 𝐿r𝑘syu 𝑓 𝑥 t𝜆 .𝑆 𝑘uq ñ

@𝑝, t𝑝 ÞÑ𝑖,𝑗 𝐿 ˚ 𝑅p𝑖, 𝑗qu par_iter 𝑓 𝑝 𝑖 𝑗 t𝜆 .𝑝 ÞÑ𝑖,𝑗 𝐿 ˚ 𝑆p𝑖, 𝑗qu
(7)

Assuming the premise, we show by induction on 𝑗 ´ 𝑖 that for all 𝑖 and 𝑗 with 0 ď 𝑖 ď 𝑗 ă |𝐿|, (7)’s RHS
holds. The condition is unknown so we prove the triple for both branches.

For the first branch, applying the rule for for, we choose the invariant

𝐼𝑘 “ 𝑝 ÞÑ𝑖,𝑗 𝐿 ˚ 𝑆p𝑖, 𝑘 ´ 1q ˚ 𝑅p𝑘, 𝑗q

Since 𝑆p𝑖, 𝑖 ´ 1q “ x y “ 𝑅p𝑗 ` 1, 𝑗q, 𝐼𝑖 does entail the precondition and 𝐼p𝑗 ` 1q the postcondition. We
need to prove the body, i.e. when 𝑘 P t𝑖, . . . , 𝑗u, t𝐼𝑘u 𝑓 p.(𝑘) t𝜆,𝐼p𝑘 ` 1qu, which rewrites to:

t𝑝 ÞÑ𝑖,𝑗 𝐿 ˚ 𝑆p𝑖, 𝑘 ´ 1q ˚ 𝑅𝑘 ˚ 𝑅p𝑘 ` 1, 𝑗qu 𝑓 p.(𝑘) t𝜆,𝑝 ÞÑ𝑖,𝑗 𝐿 ˚ 𝑆p𝑖, 𝑘 ´ 1q ˚ 𝑆𝑘 ˚ 𝑅p𝑘 ` 1, 𝑗qu

p.(𝑘) evaluates to 𝐿r𝑘s, and so it is exactly the premise of (7) after applying the frame rule.

For the second branch, we apply the rule for parallel composition after the following rewritings

𝑝 ÞÑ𝑖,𝑗 𝐿 “ 𝑝 ÞÑ𝑖,𝑚 𝐿 ˚ 𝑝 ÞÑ𝑚`1,𝑗 𝐿 𝑅p𝑖, 𝑗q “ 𝑅p𝑖,𝑚q ˚ 𝑅p𝑚` 1, 𝑗q 𝑆p𝑖, 𝑗q “ 𝑆p𝑖,𝑚q ˚ 𝑆p𝑚` 1, 𝑗q

which concludes the proof.

We define the following function, which modifies the head values of a mutable list according to a function
of type ’a -> ’b, effectively transforming, in place, p from an ’a cell to a ’b cell. Note that during
the execution, p is ill-typed if ’a and ’b are incompatible.

8

let rec mlist_replace (f : ’a -> ’b) (p : ’a cell) =

if p <> null then begin

p.hd <- f p.hd;

mlist_replace f p.tl

end

Question 3.8. Give a specification of mlist_replace in terms of Mlistof.

Answer. One possibility is to have two representation predicates, 𝑅 for ’a and 𝑆 for ’b:

@𝑓 𝑅 𝑆 p@𝑥𝑋𝐾𝐾 1, t𝑥⇝ 𝑅𝑋 ˚ 𝐽𝐾𝐾 1u 𝑓𝑥 t𝜆𝑥1, DD𝑋 1. 𝑥1 ⇝ 𝑆𝑋 1 ˚ 𝐽p𝐾&𝑋qp𝐾 1&𝑋 1quq ñ (8)

@𝑝𝐿 t𝑝⇝ Mlistof 𝑅 𝐿 ˚ 𝐽 nil nilu mlist_replace 𝑓 𝑝 t𝜆 .DD𝐿1. 𝑝⇝ Mlistof 𝑆 𝐿1 ˚ 𝐽 𝐿 𝐿1u (9)

Question 3.9. Prove that mlist_replace satisfies its specification (give a good amount of details).

Answer. We assume (8) and prove the following generalisation of (9) by induction on 𝐿.

@𝑝 𝐾 𝐾 1 t𝑝⇝ Mlistof 𝑅 𝐿 ˚ 𝐽 𝐾 𝐾 1u mlist_replace 𝑓 𝑝 t𝜆 .DD𝐿1. 𝑝⇝ Mlistof 𝑆 𝐿1 ˚ 𝐽 p𝐾 `̀ 𝐿q p𝐾 1 `̀ 𝐿1qu

If 𝐿 “ nil then nothing changes. Otherwise, 𝐿 “ 𝑋 :: 𝑀 . Writing 𝑅 instead of Mlistof 𝑅,

t𝑝⇝ 𝑅 p𝑋 :: 𝑀q ˚ 𝐽 𝐾 𝐾 1u expands to, for some 𝑝1, 𝑥,
t𝑝⇝ t|𝑥, 𝑝1|u ˚ 𝑥⇝ 𝑅𝑋 ˚ 𝑝1 ⇝ 𝑅 𝑀 ˚ 𝐽 𝐾 𝐾 1u then p.hd evaluates to 𝑥

and 𝑓𝑥 returns 𝑥1 s.t. for some 𝑋 1

t𝑝⇝ t|𝑥, 𝑝1|u ˚ 𝑥1 ⇝ 𝑆𝑋 1 ˚ 𝑝1 ⇝ 𝑅 𝑀 ˚ 𝐽 p𝐾&𝑋q p𝐾 1&𝑋 1qu the assignment of 𝑥1 gives
t𝑝⇝ t|𝑥1, 𝑝1|u ˚ 𝑥1 ⇝ 𝑆𝑋 1 ˚ 𝑝1 ⇝ 𝑅 𝑀 ˚ 𝐽 p𝐾&𝑋q p𝐾 1&𝑋 1qu by IH+frame, we get for some 𝑀 1

t𝑝⇝ t|𝑥1, 𝑝1|u ˚ 𝑥1 ⇝ 𝑆𝑋 1 ˚ 𝑝1 ⇝ 𝑆 𝑀 1 ˚ 𝐽 pp𝐾&𝑋q`̀ 𝑀q pp𝐾 1&𝑋 1q`̀ 𝑀 1qu

t𝑝1 ⇝ 𝑆 p𝑋 1 :: 𝑀 1q ˚ 𝐽 p𝐾 `̀ p𝑋 :: 𝑀qq p𝐾 1 `̀ p𝑋 1 :: 𝑀 1qqu by folding and rewriting

which concludes the induction.

We want to run a parallel graph algorithm that manipulates graphs but requires to have weights and
integer markings on each edge. The function make_edge is provided, to help modify adjacency lists
accordingly. Because we are under tight memory constraints, we add those in-place by using the function
mlist_replace.

type edge = { target : int; weight : int; mutable mark : int }

let make_edge j = { target = j; weight = Random.int 2; mark = 0 }

let augment_graph g = Array.iter (mlist_replace make_edge) g.adj

Note that after a call to augment_graph g, the original pointer g points to an object no longer fitting the
type graph. It instead represents an “augmented” graph 𝐺̂ “ p𝑉, 𝐸̂q where is the set of weighted marked
edges, and 𝐸̂ Ď 𝑉 2 ˆ N2.

Question 3.10. Give a new representation predicate of an augmented graph 𝑔 ⇝ AugmentedGraph 𝐺̂.

Answer. Let 𝑝⇝ Edgep𝑗, 𝑤,𝑚q ” t|target=𝑗,weight=𝑤,mark=𝑚|u, then 𝑔 ⇝ AugmentedGraph p𝑉, 𝐸̂q is

DD𝐿. 𝑝⇝ ArrayOf pMlistOf Edgeq 𝐿 ˚ x@𝑖𝑗𝑤𝑚, p𝑖, 𝑗, 𝑤,𝑚q P 𝐸̂ ô p𝑗, 𝑤,𝑚q P 𝐿r𝑖sy

Question 3.11. Knowing a specification for Random.int can be: @𝑛, tx𝑛 ą 0yu Random.int 𝑛 t𝜆𝑖.x0 ď 𝑖 ă

𝑛yu, and give a specification for the function augment_graph, together with a proof sketch of correctness.

Answer. It is important to note, here, that 𝐸̂ needs to be existentially quantified.

t𝑔 ⇝ Graph p𝑉,𝐸qu augment_graph 𝑔 t𝜆 .DD𝐸̂. 𝑔 ⇝ AugmentedGraph p𝑉, 𝐸̂q

˚ x@p𝑖, 𝑗, 𝑤,𝑚q P 𝑉 2, p𝑖, 𝑗, 𝑤,𝑚q P 𝐸̂ ô p𝑖, 𝑗q P 𝐸 ^ 𝑤 P t0, 1u ^ 𝑚 “ 0yu

9

	Counting Occurrences of Elements in an Array
	Separation Logic: heap predicates
	Separation Logic: adjacency lists

