Exercise 1．give heaps satisfying the following heap predicates

「7	$\bigcirc 0=1$	
${ }^{\text {「1 }}=1{ }^{\text { }}$	${ }^{\top} 1=1{ }^{\circ}{ }^{\text {「 }} 0=1{ }^{\text { }}$	
$1 \mapsto 2$	$(1 \mapsto 2) *{ }^{{fd20b687b-e5da-4889-86c5-7539a77bf457}}$	
$(1 \mapsto 2) *(1 \mapsto 3)$	$(1 \mapsto 2) *(2 \mapsto 1)$	

Exercise 2.

1．state after let $r=r e f 5$ and $s=r e f 3$ and $t=r$ ：
2．state after subsequently executing incr r ：
3．state after subsequently executing incr t ：
Exercise 3．give heaps satisfying the following heap predicates

$\exists x .{ }^{\ulcorner }(1 \mapsto x)^{\top}$	$\exists x .(1 \mapsto x) *(2 \mapsto x)$		
$\exists x .{ }^{\ulcorner } x=x+1^{\urcorner}$		$\exists x .(x \mapsto x+1) *(x+1 \mapsto x)$	
$\exists x .1 \mapsto x$	$\exists x .(x \mapsto 1) *(x \mapsto 2)$		
$\exists P .{ }^{\ulcorner } P^{\urcorner}$		$\exists H . H$	

Exercise 4．in－place list reversal

State before the loop：
State after the loop：
Loop invariant：

Exercise 5．length of mutable list using a while loop

State before the loop：
State after the loop：
Picture describing the state during the loop：

Try to state a loop invariant．What do you need？

Exercise 6．generalize MList to define $p \rightsquigarrow \operatorname{MlistSeg} q L$ ，where L denotes the list of items in the list segment from p（inclusive）to q（exclusive）：
$p \rightsquigarrow$ MlistSeg $q L \equiv$

Exercise 7. length of mutable list using a while loop and MlistSeg

Loop invariant: $\exists q, L_{1}, L_{2} \ldots$
Instantiate q, L_{1}, L_{2} before the loop:
Instantiate q, L_{1}, L_{2} after the loop:
Exercise 8. define the representation predicate $p \rightsquigarrow$ Queue L.

Exercise 9. define the representation predicate $p \rightsquigarrow$ Mtree T.

Exercise 10. define $p \rightsquigarrow$ MtreeDepth $n T$ by generalizing $p \rightsquigarrow$ Mtree T.

Exercise 11. give an alternative definition of " $p \rightsquigarrow$ MtreeDepth $n T$ ", this time by reusing the definition of $p \rightsquigarrow$ Mtree T without modification.

Exercise 12. define a predicate $p \rightsquigarrow$ MtreeComplete T for describing a mutable complete binary tree, of some unspecified depth.

Exercise 13. define a predicate $p \rightsquigarrow$ MsearchTree E for describing a mutable binary search tree storing the set of elements E.

Exercise 14. specify the primitive operations on references.

$$
\begin{gathered}
(\text { ref v) } \\
(!r) \\
(r:=\mathrm{v})
\end{gathered}
$$

Exercise 15. Give specifications for:

$$
\begin{gathered}
\text { (Array.get i p) } \\
(\text { Array.set i p v) } \\
(\text { Array.length p) } \\
(\text { Array.create n v) }
\end{gathered}
$$

Exercise 16. What is the natural specification of function myref? What is missing from our current interpretation of triple?

