Exercise 1. give heaps satisfying the following heap predicates

r =1
1T=1" MT=1"«0=1"
1—2 (1—2)«1=1

(1—2)=(1~3) (1—2)=(2—1)

Exercise 2.
1. state after let r = ref 5 and s = ref 3 and t = r:
2. state after subsequently executing incr r:
3. state after subsequently executing incr t:

Exercise 3. give heaps satisfying the following heap predicates

dz."(1 - 2)’ dz.(1—2)*(2—x)
dr.'z=a2+1 dz.(z—ax+1)x(x+1—2x)
dr. 12 dz.(z— 1) = (x — 2)
ipP.'P’ 1H. H
Exercise 4. in-place list reversal

State before the loop:
State after the loop:

Loop invariant:

Exercise 5. length of mutable list using a while loop

State before the loop:
State after the loop:

Picture describing the state during the loop:

Try to state a loop invariant. What do you need?

Exercise 6. generalize MList to define p ~~ MlistSeg ¢ L, where L denotes the list of items
in the list segment from p (inclusive) to ¢ (exclusive):

p ~ MlistSegq L =

Exercise 7. length of mutable list using a while loop and MlistSeg
Loop invariant: dq, L1, Ls. ...

Instantiate ¢, Ly, Lo before the loop:
Instantiate ¢, L1, Lo after the loop:

Exercise 8. define the representation predicate p ~ Queue L.

Exercise 9. define the representation predicate p ~ MtreeT.

Exercise 10. define p ~> MtreeDepthn T by generalizing p ~» Mtree T

Exercise 11. give an alternative definition of “p ~» MtreeDepthn T”, this time by reusing
the definition of p ~~ Mtree T" without modification.

Exercise 12. define a predicate p ~» MtreeCompleteT" for describing a mutable complete
binary tree, of some unspecified depth.

Exercise 13. define a predicate p ~ MsearchTree E for describing a mutable binary search
tree storing the set of elements F.

Exercise 14. specify the primitive operations on references.

(ref v)

(1r)

Exercise 15. Give specifications for:
(Array.get i p)
(Array.set i p v)
(Array.length p)
(Array.create n v)

Exercise 16. What is the natural specification of function myref? What is missing from
our current interpretation of triple?

