Simple Syntax Extensions
(labels, local mutable variables)

Functions and Function calls
Proving Termination

More on Specification Languages and Application to Arrays

Claude Marché
Cours MPRI 2-36-1 “Preuve de Programme”
December 15th, 2023

Exercise 1

Consider the following (inefficient) program for computing the sum \(a + b \)

\[
x \leftarrow a; y \leftarrow b;
\]

\[
\text{while } y > 0 \text{ do} \\
x \leftarrow x + 1; y \leftarrow y - 1
\]

(Why3 file to fill in: \texttt{imp_sum.mlw})

▶ Propose a post-condition stating that the final value of \(x \) is the sum of the values of \(a \) and \(b \)
▶ Find an appropriate loop invariant
▶ Prove the program

Exercise 2

The following program is one of the original examples of Floyd

\[
q \leftarrow 0; r \leftarrow x; \\
\text{while } r >= y \text{ do} \\
r \leftarrow r - y; q \leftarrow q + 1
\]

(Why3 file to fill in: \texttt{imp_euclidean_div.mlw})

▶ Propose a formal precondition to express that \(x \) is assumed non-negative, \(y \) is assumed positive, and a formal post-condition expressing that \(q \) and \(r \) are respectively the quotient and the remainder of the Euclidean division of \(x \) by \(y \)
▶ Find appropriate loop invariants and prove the correctness of the program

Reminder of the last lecture

▶ Logics and automated prover capabilities
 ▶ propositional logic
 ▶ first-order logic
 ▶ theories: equality, integer arithmetic
▶ classical Floyd-Hoare logic
 ▶ very simple “IMP” programming language
 ▶ deduction rules for triples \([Pre]s[Post]\)
▶ weakest liberal pre-conditions (Dijkstra)
 ▶ function \(\text{WLP}(s, Q) \) returning a logic formula
 ▶ soundness: if \(P \rightarrow \text{WLP}(s, Q) \) then triple \([P]s[Q]\) is valid
▶ main “creative” activity: \textit{discovering loop invariants}
Reminder of the last lecture (continued)

- Modern programming language, ML-like
 - more data types: int, bool, real, unit
 - logic variables: local and immutable
 - statement = expression of type unit
 - Typing rules
 - Formal operational semantics (small steps)
 - type soundness: every typed program executes without blocking

- Blocking semantics and Weakest Preconditions:
 - e executes safely in Σ, π if it does not block on an assertion or a loop invariant
 - If $\Sigma, \pi \models WP(e, Q)$ then e executes safely in Σ, π, and if it terminates then Q valid in the final state

- Exercises

This Lecture’s Goals

- Extend that language:
 - Labels for reasoning on the past, local mutable variables
 - Sub-programs, function calls, modular reasoning
 - Limitations of modular reasoning: subcontract weaknesses, non-inductive invariants

- Analyzing Termination
 - prove termination when wanted

- (First-order) logic as a modeling language
 - Definitions of new types, product types
 - Definitions of functions, of predicates
 - Axiomatizations

- Application:
 - a bit of higher-order logic
 - program on Arrays

Outline

Syntax extensions
 - Labels
 - Local Mutable Variables
 - Functions and Functions Calls

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Labels: motivation

Ability to refer to past values of variables

```plaintext
{ true } let v = r in (r <- v + 42; v) { r = r@Old + 42 /\ result = r@Old }

{ true } let tmp = x in x <- y; y <- tmp { x = y@Old /\ y = x@Old }

SUM revisited:
{ y >= 0 }
L:
while y > 0 do
  invariant { x + y = x@L + y@L }
  x <- x + 1; y <- y - 1
{ x = x@Old + y@Old /\ y = 0 }
```
Labels: Syntax and Typing

Add in syntax of **terms**:

\[t ::= x@L \] (labeled variable access)

Add in syntax of **expressions**:

\[e ::= L : e \] (labeled expressions)

Typing:

- only mutable variables can be accessed through a label
- labels must be declared before use

Implicitly declared labels:

- **Here**, available in every formula
- **Old**, available everywhere except pre-conditions

New rules for WP

New rules for computing WP:

\[
\begin{align*}
\text{WP}(x < t, Q) &= Q[x@Here \leftarrow t@Here] \\
\text{WP}(L : e, Q) &= \text{WP}(e, Q)[x@L \leftarrow x@Here | x \text{ any variable}]
\end{align*}
\]

Exercise:

\[
\text{WP}(L : x < x + 42, x@Here > x@L) = ?
\]

Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- value of variable \(x \) at label \(L \) is denoted \(\Sigma(x, L) \)

New semantics of variables in terms:

\[
\begin{align*}
[X]_{\Sigma, \pi} &= \Sigma(x, \text{Here}) \\
[x@L]_{\Sigma, \pi} &= \Sigma(x, L)
\end{align*}
\]

The operational semantics of expressions is modified as follows

\[
\begin{align*}
\Sigma, \pi, x < - \text{val} & \leadsto (\Sigma(x, \text{Here}) \leftarrow \text{val}), \pi, () \\
\Sigma, \pi, L : e & \leadsto (\Sigma(x, L) \leftarrow \Sigma(x, \text{Here}) | x \text{ any variable}), \pi, e
\end{align*}
\]

Syntactic sugar: term \(t@L \)

- attach label \(L \) to any variable of \(t \) that does not have an explicit label yet
- example:\((x + y@K + 2)@L + x \) is \(x@L + y@K + 2 + x@\text{Here} \)

Example: computation of the GCD

(assuming notion of greatest common divisor exists in the logic)

Euclid’s algorithm:

\[
\begin{align*}
\text{requires} & \{ x >= 0 \land y >= 0 \} \\
\text{ensures} & \{ \text{result} = \gcd(x@\text{old}, y@\text{old}) \}
\end{align*}
\]

= L:

\[
\begin{align*}
\text{while } y > 0 & \text{ do} \\
\text{invariant} & \{ ? \} \\
\text{let } r & = \text{mod } x \ y \text{ in } x <- y; y <- r \\
\text{done}; \\
x
\end{align*}
\]

See file \texttt{gcd.euclid.labels.mlw}
Mutable Local Variables

We extend the syntax of expressions with

\[e ::= \text{let ref id} = e \text{ in } e \]

(note: I use “ref” instead of “mut” because of Why3)

Example: isqrt revisited

\[
\begin{align*}
\text{val ref x : int} \\
\text{val ref res : int} \\
\text{res <- 0;} \\
\text{let ref sum = 1 in} \\
\text{while sum <= x do} \\
\text{res <- res + 1; sum <- sum + 2 * res + 1} \\
\text{done}
\end{align*}
\]

Operational Semantics

Judgements:

\[\Sigma, \pi, e \rightsquigarrow \Sigma', \pi', e' \]

\(\pi \) no longer contains just immutable variables

\[
\begin{align*}
\Sigma, \pi, e_1 \rightsquigarrow \Sigma', \pi', e'_1 \\
\Sigma, \pi, \text{let ref } x = e_1 \text{ in } e_2 \rightsquigarrow \Sigma', \pi', \text{let ref } x = e'_1 \text{ in } e_2 \\
\Sigma, \pi, \text{let ref } x = v \text{ in } e \rightsquigarrow \Sigma, \pi \{(x, \text{Here}) \leftarrow v\}, e \\
\text{x local variable} \\
\Sigma, \pi, x < - v \rightsquigarrow \Sigma, \pi \{(x, \text{Here}) \leftarrow v\}, e
\end{align*}
\]

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

\[
\begin{align*}
\text{WP(let ref } x = e_1 \text{ in } e_2, Q) &= \text{WP}(e_1, \text{WP}(e_2, Q)[x \leftarrow \text{result}]) \\
\text{WP}(x \leftarrow e, Q) &= \text{WP}(e, Q[x \leftarrow \text{result}]) \\
\text{WP}(L : e, Q) &= \text{WP}(e, Q)[x@L \leftarrow x@\text{Here} | x \text{ any variable}]
\end{align*}
\]

Functions

Program structure:

\[
\begin{align*}
\text{prog} & ::= \text{decl}^* \\
\text{decl} & ::= \text{vardecl} | \text{fundecl} \\
\text{vardecl} & ::= \text{val ref id} : \text{basetype} \\
\text{fundecl} & ::= \text{let } id((\text{param},)^*):\text{basetype} \\
& \quad \text{contract body } e \\
\text{param} & ::= \text{id} : \text{basetype} \\
\text{contract} & ::= \text{requires } t \text{ writes } (\text{id},)^* \text{ ensures } t
\end{align*}
\]

Function definition:

- Contract:
 - pre-condition
 - post-condition (label \textit{Old} available)
 - assigned variables: clause \textit{writes}
- Body: expression
Example: isqrt

```plaintext
let isqrt(x:int): int
  requires x >= 0
  ensures result >= 0 /
  \( \text{sqr(result)} \leq x < \text{sqr(result + 1)} \)
body
let ref res = 0 in
let ref sum = 1 in
while sum <= x do
  res <- res + 1;
  sum <- sum + 2 * res + 1
done;
res
```

Example using *Old* label

```plaintext
val ref res: int

let incr(x:int)
  requires true
  writes res
  ensures res = res@Old + x
body
  res <- res + x
```

Typing

Definition \(d \) of function \(f \):

```
let \( f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)
  requires \( Pre \)
  writes \( \vec{w} \)
  ensures \( Post \)
body \( \text{Body} \)
```

Well-formed definitions:

\[
\Gamma' = \{ x_i : \tau_i \mid 1 \leq i \leq n \} : \Gamma \quad \vec{w} \subseteq \Gamma \\
\Gamma' \vdash Pre, Post : \text{formula} \\
\Gamma' \vdash \text{Body} : \tau \quad \vec{w}_g \subseteq \vec{w} \text{ for each call } g \\
y \in \vec{w} \text{ for each assign } y \\
\Gamma \vdash d : \text{wf}
\]

where \(\Gamma \) contains the global declarations

Typing: function calls

```
let \( f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)
  requires \( Pre \)
  writes \( \vec{w} \)
  ensures \( Post \)
body \( \text{Body} \)
```

Well-typed function calls:

\[
\Gamma \vdash t_i : \tau_i \\
\Gamma \vdash f(t_1, \ldots, t_n) : \tau
\]

Note: for simplicity the expressions \(t_i \) are assumed without side-effect (introduce extra let-expression if needed)
Operational Semantics of a Function Call

let \(f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)

requires \(Pre \)
writes \(\vec{w} \)
ensures \(Post \)
body \(Body \)

\[
\pi = \{ x_i \mapsto [t_i]_{\Sigma, \pi} \} \quad \Sigma, \pi \models Pre
\]
\[
\Sigma, \Pi, f(t_1, \ldots, t_n) \Rightarrow \Sigma, (\pi, Post) \cdot \Pi, (Old : Body)
\]

A call frame is a pair \((\pi, Post)\) of a local stack and a formula \(\Pi\) denotes a stack of call frames.

Blocking Semantics
Execution blocks at call if pre-condition does not hold

WP Rule of Function Call

let \(f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \)

requires \(Pre \)
writes \(\vec{w} \)
ensures \(Post \)
body \(Body \)

\[
WP(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \land \\
\forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j@Old \leftarrow w_j] \Rightarrow Q[w_j \leftarrow v_j])
\]

Modular Proof Methodology
When calling function \(f \), only the contract of \(f \) is visible, not its body.

Example: isqrt(42)

Exercise: prove that \{true\}isqrt(42){result = 6} holds

```latex
val isqrt(x:int): int
  requires x >= 0
  writes (nothing)
  ensures result >= 0 /\ 
    sqr(result) <= x < sqr(result + 1)
```

Abstraction of sub-programs
▶ Keyword \texttt{val} introduces a function with a contract but without body.
▶ \texttt{writes} clause is mandatory in that case.

Operational Semantics of returning from Function Call

We check that the post-condition holds at the end:

\[
\Sigma, \pi \models Post[\text{result} \leftarrow v]
\]
\[
\Sigma, (\pi, Post) \cdot \Pi, v \Rightarrow \Sigma, \Pi, v
\]
Example: Incrementation

```ocaml
val ref res: int
val incr(x:int):unit
  writes res
  ensures res = res@Old + x
```

Exercise: Prove that \(\{res = 6\} incr(36) \{res = 42\} \) holds

Soundness Theorem for a Complete Program

Assuming that for each function defined as

```ocaml
let f(x_1: \tau_1, \ldots, x_n: \tau_n): \tau
  requires Pre
  writes \vec{w}
  ensures Post
  body Body
```

we have

- \(\triangleright \) variables assigned in Body belong to \(\vec{w} \),
- \(\triangleright \models Pre \rightarrow WP(Body, Post)[\vec{w}@Old \leftarrow \vec{w}] \) holds,

then for any formula \(Q \), any expression \(e \), any configuration \((\Sigma, \pi) \):

\[
\text{if } \Sigma, \pi \models WP(e, Q) \text{ then execution of } \Sigma, \pi, e \text{ is safe}
\]

Remark: (mutually) recursive functions are allowed

Limitations of modular reasoning

```ocaml
let f(x:int):int
  ensures \{ result > x \}
  = x+1
```

```ocaml
let g () =
  let a = f(0) in
  assert \{ a = 1 \}
```

Non-inductive loop invariants

```ocaml
let ref i = 0 in
while i < 2 do
  invariant \{ i <> 1 \}
  i <- i+2;
done
```

Weakness of loop invariants

An invariant might be valid (the program is safe) and yet not be provably preserved by an arbitrary loop iteration

Inductive invariants

A loop invariant is called inductive when it can be proved initially valid and preserved by loop iterations

In other words: a loop invariant may be valid (in the sense of safety) and yet not being inductive
Limitations of modular reasoning (case of loops)

```
let ref i = 5 in
while i < 10 do
  invariant { i >= 0 }
  i <- i+2;
  done;
assert { i = 11 }
```

Subcontract weakness (for loop)

A program can be *safe* (never blocks on annotations) and yet not being provable

Termination

Goal

Prove that a program terminates (on all inputs satisfying the precondition)

Amounts to show that

- loops never execute infinitely many times
- (mutual) recursive calls cannot occur infinitely many times

Outline

- Syntax extensions
- Termination, Variants
- Advanced Modeling of Programs
- Programs on Arrays

Case of loops

Solution: annotate loops with *loop variants*

- a term that *decreases at each iteration*
- for some *well-founded ordering* \prec (i.e. there is no infinite sequence $val_1 \prec val_2 \prec val_3 \prec \cdots$
- A typical ordering on integers:

$$x \prec y \iff x < y \land 0 \leq y$$
Syntax

New syntax construct:

\[e ::= \text{while } e \text{ invariant } / \text{variant } t, \prec \text{ do } e \]

Example:

\{ y \geq 0 \}
L:
while y > 0 do
 invariant \{ x + y = x@L + y@L \}
 variant \{ y \}
 x <- x + 1; y <- y - 1
\{ x = x@Old + y@Old \land y = 0 \}

Operational semantics

If \[l \in \Sigma, \pi \text{ holds} \]
\[\Sigma, \pi, \text{while } c \text{ invariant } / \text{variant } t, \prec \text{ do } e \rightarrow \]
\[\Sigma, \pi, L \text{ : if } c \]
 then \(e; \text{assert } t \prec t@L; \)
 while \(c \text{ invariant } / \text{variant } t, \prec \text{ do } e \)
 else ()

(new parts shown in red)

Weakest Precondition

WP(while \(c \) invariant / \(\text{variant } t, \prec \) do \(e \), \(Q \)) =
\[I \land \forall \vec{v}. (I \rightarrow WP(L : c; \text{if result then } WP(e, I \land t \prec t@L) else Q)) \]
[\[w_i \leftarrow v_i \]

In practice with Why3

- presence of loop variants tells if one wants to prove termination or not
- warning issued if no variant given
- keyword diverges in contract for non-terminating functions
- default ordering determined from type of \(t \)

Examples

Exercise: find adequate variants

\begin{verbatim}
i <- 0;
while i <= 100
 variant ?
 do i <- i+1
 done;
while sum <= x
 variant ?
 do res <- res + 1; sum <- sum + 2 * res + 1
 done;
\end{verbatim}

Solutions:

\(\text{variant } 100 - i \quad \text{invariant } res \geq 0 \)
\(\text{variant } x - sum \)
Recursive Functions: Termination

If a function is recursive, termination of call can be proved, provided that the function is annotated with a variant.

```plaintext
let f(x_1 : τ_1, ..., x_n : τ_n) : τ
  requires Pre
  variant var, ⊲
  writes w
  ensures Post
  body Body

WP for function call:

WP(f(t_1, ..., t_n), Q) = Pre[x_i ← t_i] ⊗ var[x_i ← t_i] ⊲ var@Old ⊗
∀y, (Post[x_i ← t_i][w_j ← y_j][w_j@Old ← w_j] → Q[w_j ← y_j])
```

Example of variant on a recursive function

```plaintext
let fib (x:int) : int
  variant ?
  body
  if x <= 1 then 1 else fib (x-1) + fib (x-2)

Solution:
  variant x
```

Case of mutual recursion

Assume two functions \(f(\vec{x}) \) and \(g(\vec{y}) \) that call each other

- each should be given its own variant \(v_f \) (resp. \(v_g \)) in their contract
- with the same well-founded ordering \(⊲ \)

When \(f \) calls \(g(\vec{i}) \) the WP should include

\(v_g[\vec{y} ← \vec{i}] ⊲ v_i@Old \)

and symmetrically when \(g \) calls \(f \)

Home Work 1: McCarthy’s 91 Function

\[f_91(n) = \begin{cases} f_91(f_91(n + 11)) & \text{if } n \leq 100 \\ n - 10 & \text{else} \end{cases} \]

Find adequate specifications

```plaintext
let f91(n:int): int
  requires ?
  variant ?
  writes ?
  ensures ?
  body
  if n <= 100 then f91(f91(n + 11)) else n - 10

Use canvas file mccarthy.mlw
```
Outline

Syntax extensions

Termination, Variants

Advanced Modeling of Programs
(First-Order) Logic as a Modeling Language
Axiomatic Definitions

Programs on Arrays

About Specification Languages

Specification languages:
- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL
- ...

Case of Why3, ACSL, Dafny: trade-off between
- expressiveness of specifications
- support by automated provers

Why3 Logic Language

- (First-order) logic, built-in arithmetic (integers and reals)
- Definitions à la ML
 - logic (i.e. pure) functions, predicates
 - structured types, pattern-matching (next lecture)
- type polymorphism à la ML
- higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (next lecture)

Important note

Logic functions and predicates are always totally defined

Definition of new Logic Symbols

Logic functions defined as

\[
\text{function } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau = e
\]

Predicate defined as

\[
\text{predicate } p(x_1 : \tau_1, \ldots, x_n : \tau_n) = e
\]

where \(\tau_1, \tau \) are logic types (not references)
- No recursion allowed (yet)
- No side effects
- Defines total functions and predicates
Logic Symbols: Examples

function \text{sqr}(x: \text{int}) = x \times x

predicate \text{divides}(x: \text{int}, y: \text{int}) =
exists z: \text{int}. y = x \times z

predicate \text{is_prime}(x: \text{int}) =
x \geq 2 /
forall y z: \text{int}. y \geq 0 /
z \geq 0 /
x = y \times z ->
y = 1 \lor z = 1

Definition of new logic types: Product Types

- Tuples types are built-in:
 \text{\textit{type}} pair = (\text{int, int})

- Record types can be defined:
 \text{\textit{type}} point = \{ x: \text{real}; y: \text{real} \}

 Fields are immutable

- We allow let with pattern, e.g.
 \begin{align*}
 & \text{let} \ (a, b) = ... \ \text{in} ... \\
 & \text{let} \ \{ x = a; y = b \} = ... \ \text{in} ...
 \end{align*}

- Dot notation for records fields, e.g.
 \text{p.x + p.y}

Axiomatic Definitions

- Function and predicate declarations of the form

 \begin{align*}
 & \text{function} \ f(\tau_1, ..., \tau_n) : \tau \\
 & \text{predicate} \ p(\tau_1, ..., \tau_n)
 \end{align*}

 together with axioms

 \text{axiom} \ \text{id} : \text{formula}

 \text{Semantics}

 these declarations specify that \(f \) (resp. \(p \)) is any logic function (resp. predicate) satisfying the axioms

Axiomatic Definitions

Example: division

\begin{align*}
& \text{function} \ \text{div}(\text{real, real}) : \text{real} \\
& \text{axiom} \ \text{mul_div}: \\
& \quad \forall x, y. y \neq 0 \rightarrow \text{div}(x, y) \times y = x
\end{align*}

Example: factorial

\begin{align*}
& \text{function} \ \text{fact}(\text{int}) : \text{int} \\
& \text{axiom} \ \text{fact0}: \\
& \quad \text{fact}(0) = 1 \\
& \text{axiom} \ \text{factn}: \\
& \quad \forall n : \text{int}. n \geq 1 \rightarrow \text{fact}(n) = n \times \text{fact}(n - 1)
\end{align*}

Exercise: axiomatize the GCD
Axiomatic Definitions

Functions/predicates are typically underspecified
⇒ we can model partial functions in a logic of total functions

Warning about soundness
Axioms may introduce inconsistencies

function div(real,real):real
axiom mul_div: ∀ x,y. div(x,y)*y = x
implies 1 = div(1,0)*0 = 0

Outline

Syntax extensions
Termination, Variants
Advanced Modeling of Programs
Programs on Arrays

Underspecified Logic Functions and Run-time Errors

Error “Division by zero” can be modeled by an abstract function

val div_real(x:real,y:real):real
 requires y <> 0.0
 ensures result = div(x,y)

Reminder
Execution blocks when an invalid annotation is met

Higher-order logic as a built-in theory

▶ type of \(\tau_1 \rightarrow \tau_2 \)
▶ lambda-expressions: \(\text{fun } x : \tau \rightarrow t \)

Definition of selection function:

function select (f:α → β) (x:α) : β = f x

Definition of function update:

function store (f:α → β) (x:α) (v:β) : α → β =
 \text{fun } (y:α) \rightarrow \text{if } x = y \text{ then } v \text{ else } f y

SMT (first-order) theory of “functional arrays”

lemma select_store_eq: ∀ f:α→β, x:α, v:β.
 select(store(f,x,v),x) = v

lemma select_store_neq: ∀ f:α→β, x y:α, v:β.
 x <> y -> select(store(f,x,v),y) = select(f,y)
Arrays as Mutable Variables of type "Map"

- Array variable: mutable variable of type $\text{int} \rightarrow \alpha$
- In a program, the standard assignment operation $a[i] <- e$
 is interpreted as $a <- \text{store}(a, i, e)$

Simple Example

```hs
val ref a: int -> int
let test()
  writes a
  ensures select(a,0) = 13 (* a[0] = 13 *)
body
  a <- store(a,0,13); (* a[0] <- 13 *)
  a <- store(a,1,42) (* a[1] <- 42 *)

Exercise: prove this program
```

Example: Swap

Permute the contents of cells i and j in an array a:

```hs
val ref a: int -> int
let swap(i:int,j:int)
  writes a
  ensures select(a,i) = select(a@Old,j) \ /
        select(a,j) = select(a@Old,i) \ /
        forall k:int. k <> i \ / k <> j ->
        select(a,k) = select(a@Old,k)
body
  let tmp = select(a,i) in (* tmp <-a[i]*)
  a <- store(a,i,select(a,j)); (* a[i]<-a[j]*)
  a <- store(a,j,tmp) (* a[j]<-tmp *)
```

Note how we use both lemmas select_store_eq and select_store_neq
Arrays as Variables of Type “length × map”

- Goal: model “out-of-bounds” run-time errors
- Array variable: mutable variable of type \(\text{array } \alpha \)

```
type array 'a = { length : int; elts : int -> 'a}

val get (ref a:array 'a) (i:int) : 'a
  requires 0 <= i < a.length
  ensures result = select(a.elts,i)

val set (ref a:array 'a) (i:int) (v:'a) : unit
  requires 0 <= i < a.length
  writes a
  ensures a.length = a@Old.length /
  a.elts = store(a@Old.elts,i,v)
```

- \(a[i] \) interpreted as a call to \(\text{get}(a,i) \)
- \(a[i] \leftarrow v \) interpreted as a call to \(\text{set}(a,i,v) \)

Example: Swap again

```
val ref a: array int
let swap(i:int,j:int)
  requires 0 <= i < a.length /
            0 <= j < a.length
  writes a
  ensures select(a.elts,i) = select(a@Old.elts,j) /
          select(a.elts,j) = select(a@Old.elts,i) /
          forall k:int. 0 <= k < a.length /
          k <> i /
          k <> j ->
          select(a.elts,k) = select(a@Old.elts,k)

body
let tmp = get(a,i) in
  (* tmp <- a[i]*)
set(a,i,get(a,j));
  (* a[i] <- a[j]*)
set(a,j,tmp)
  (* a[j] <- tmp *)
```

Note about Arrays in Why3

```
use array.Array

Example: swap
```

```
val a: array int
let swap (i:int) (j:int)
  requires { 0 <= i < a.length /
              0 <= j < a.length }
  writes { a }
  ensures { a[i] = old a[j] /
            a[j] = old a[i]}
  ensures { forall k:int.
          0 <= k < a.length /
          k <> i /
          k <> j ->
          a[k] = old a[k] }

  let tmp = a[i] in
  a[i] <- a[j];
  a[j] <- tmp
```

Exercises on Arrays

- Prove Swap by computing the WP
- Using WP, prove the program

```
let test()
  requires
    select(a,0) = 13 /
    select(a,1) = 42 /
    select(a,2) = 64
  ensures
    select(a,0) = 64 /
    select(a,1) = 42 /
    select(a,2) = 13

body
  swap(0,2)
```
Exercise on Arrays: incrementation

- Specify, implement, and prove a program that increments by 1 all cells, between given indices i and j, of an array of reals.
See file array_incr.mlw

Exercise: Search Algorithms

```
var a: array real

let search(n:int, v:real): int
  requires 0 <= n
  ensures { ? }
  = ?
```

1. Formalize postcondition: if v occurs in a, between 0 and $n - 1$, then result is an index where v occurs, otherwise result is set to -1.

2. Implement and prove linear search:
```
res <- -1;
for each $i$ from 0 to $n - 1$: if $a[i] = v$ then res <- $i$;
return res
```
See file lin_search.mlw

Home Work 4: Binary Search

```
low = 0; high = n - 1;
while low <= high:
  let $m$ be the middle of low and high
  if $a[m] = v$ then return $m$
  if $a[m] < v$ then continue search between $m$ and high
  if $a[m] > v$ then continue search between low and $m$
```
See file bin_search.mlw

Home Work 5: “for” loops

Syntax: `for $i = e_1$ to e_2 do e`

Typing:
- i visible only in e, and is immutable
- e_1 and e_2 must be of type int, e must be of type unit

Operational semantics:
(assuming e_1 and e_2 are values v_1 and v_2)
```
\[ \sum,\pi, for \ i = v_1 \ to \ v_2 \ do \ e \leadsto \sum,\pi,() \]
```
```
\[ v_1 > v_2 \]
\[ \sum,\pi, for \ i = v_1 \ to \ v_2 \ do \ e \leadsto \sum,\pi,(let \ i = v_1 \ in \ e); \]
\[ v_1 \leq v_2 \]
\[ \sum,\pi, for \ i = v_1 \ to \ v_2 \ do \ e \leadsto \sum,\pi,(for \ i = v_1 + 1 \ to \ v_2 \ do \ e) \]`
Propose a Hoare logic rule for the for loop:

\[
\begin{align*}
\{?\} & e {?} \\
\{?\} & \text{for } i = v_1 \text{ to } v_2 \text{ do } e {?} \\
\{?\} & e {?} 
\end{align*}
\]

Propose a rule for computing the WP:

\[ WP(\text{for } i = v_1 \text{ to } v_2 \text{ invariant } I \text{ do } e, Q) = ? \]