Ghost Code, Lemma Functions
More Data Types (lists, trees)
Handling Exceptions
Computer Arithmetic

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

January 10th, 2023
Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Function Calls

let $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$

requires Pre
writes \vec{w}
ensures $Post$
body $Body$

$$WP(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \land$$
$$\forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j@Old \leftarrow w_j] \rightarrow Q[w_j \leftarrow v_j])$$

Modular proof

When calling function f, only the contract of f is visible, not its body
Soundness Theorem for a Complete Program

Assuming that for each function defined as

\[
\text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \\
\text{ requires } Pre \\
\text{ writes } \vec{w} \\
\text{ ensures } Post \\
\text{ body } Body
\]

we have

\begin{itemize}
\item variables assigned in Body belong to \(\vec{w} \),
\item \(\models Pre \rightarrow WP(Body, Post)[w_i@Old \leftarrow w_i] \) holds,
\end{itemize}

then for any formula \(Q \) and any expression \(e \), if \(\Sigma, \pi \models WP(e, Q) \) then execution of \(\Sigma, \pi, e \) is safe

Remark: (mutually) recursive functions are allowed
Termination

- Loop *variant*
- *Variants* for (mutually) recursive function(s)
Home Work: McCarthy’s 91 Function

\[f_{91}(n) = \text{if } n \leq 100 \text{ then } f_{91}(f_{91}(n + 11)) \text{ else } n - 10 \]

Find adequate specifications

```
let f91(n:int): int
    requires ?
    variant ?
    writes ?
    ensures ?
body
    if n <= 100 then f91(f91(n + 11)) else n - 10
```

Use canvas file `mccarthy.mlw`
Programs on Arrays

- applicative maps as a built-in theory
- array = record (length, pure map)
- handling of out-of-bounds index check

```ml
type array 'a = { length : int; elts : int -> 'a }

val get (ref a:array 'a) (i:int) : 'a
  requires 0 <= i < a.length
  ensures result = select(a.elts,i)

val set (ref a:array 'a) (i:int) (v:'a) : unit
  requires 0 <= i < a.length
  writes a
  ensures a.length = a@Old.length /
        a.elts = store(a@Old.elts,i,v)
```

- `a[i]` interpreted as a call to `get(a,i)`
- `a[i] <- v` interpreted as a call to `set(a,i,v)`
var a: array int

let search(v:int): int
 requires 0 <= a.length
 ensures { ? }
 = ?

1. Formalize postcondition: if \(v \) occurs in \(a \), between 0 and \(a.length - 1 \), then result is an index where \(v \) occurs, otherwise result is set to \(-1\)

2. Implement and prove linear search:

 \[
 \text{res} \leftarrow -1; \\
 \text{for each } i \text{ from } 0 \text{ to } a.length - 1: \text{if } a[i] = v \text{ then } \text{res} \leftarrow i; \\
 \text{return res}
 \]

See file lin_search.mlw
low = 0; high = a.length – 1;
while low ≤ high:
 let m be the middle of low and high
 if a[m] = v then return m
 if a[m] < v then continue search between m and high
 if a[m] > v then continue search between low and m

See file bin_search.mlw
Home Work: “for” loops

Syntax: \(\text{for } i = e_1 \text{ to } e_2 \text{ do } e \)

Typing:
- \(i \) visible only in \(e \), and is immutable
- \(e_1 \) and \(e_2 \) must be of type \textit{int}, \(e \) must be of type \textit{unit}

Operational semantics:
(assuming \(e_1 \) and \(e_2 \) are values \(v_1 \) and \(v_2 \))

\[
\begin{align*}
\frac{v_1 > v_2}{\Sigma, \pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \pi, ()} \\
\end{align*}
\]

\[
\frac{v_1 \leq v_2}{\Sigma, \pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \pi, \begin{cases}
(\text{let } i = v_1 \text{ in } e); \\
(\text{for } i = v_1 + 1 \text{ to } v_2 \text{ do } e)
\end{cases}}
\]
Home Work: “for” loops

Propose a Hoare logic rule for the for loop:

\[
\{ ? \} e \{ ? \} \\
\{ ? \} \text{for } i = v_1 \text{ to } v_2 \text{ do } e \{ ? \}
\]

Propose a rule for computing the WP:

\[
\text{WP(for } i = v_1 \text{ to } v_2 \text{ invariant } I \text{ do } e, Q) = ?
\]
Home Work: “for” loops

Notice: loop invariant I typically has i as a free variable
Informal vision of execution, stating when invariant is supposed to hold and for which value of i:

\[
\begin{align*}
\{ & I[i \leftarrow v1]\} \\
& i \leftarrow v1 \\
\{ & \} \\
& e \\
\{ & I[i \leftarrow i + 1]\} \\
& i \leftarrow i + 1 \\
\{ & \} \\
& e \\
\vdots \\
\{ & \} \\
& e \\
\{ & I[i \leftarrow i + 1]\} \\
& i \leftarrow i + 1 \\
(* assuming now $i = v2$, last iteration *) \\
\{ & \} (* where $i = v2$ *) \\
& e \\
\{ & I[i \leftarrow i + 1]\} (* and still i=v2, hence *) \\
\{ & I[i \leftarrow v2 + 1]\} \\
\end{align*}
\]
Home Work: “for” loops

So we deduce the Hoare logic rule

\[
\begin{align*}
\{I \land v_1 \leq i \leq v_2\} & \text{e}\{l[i \leftarrow i + 1]\} \\
\{l[i \leftarrow v_1] \land v_1 \leq v_2\} & \text{for } i = v_1 \text{ to } v_2 \text{ do } \text{e}\{l[i \leftarrow v_2 + 1]\}
\end{align*}
\]

Remark

Some rule should be stated for case \(v_1 > v_2\), left as exercise

and then a rule for computing the WP:

\[
\begin{align*}
\text{WP}(\text{for } i = v_1 \text{ to } v_2 \text{ invariant } l \text{ do } e, Q) &= \\
v_1 \leq v_2 \land l[i \leftarrow v_1] \land \\
\forall \vec{v}, (\\
(\forall i, l \land v_1 \leq i \leq v_2 \rightarrow \text{WP}(e, l[i \leftarrow i + 1])) \land \\
(l[i \leftarrow v_2 + 1] \rightarrow Q))[w_j \leftarrow v_j]
\end{align*}
\]

Additional exercise: use a for loop in the linear search example

lin_search_for.mlw
Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
(Why3) Logic Language (reminder)

- (First-order) logic, built-in arithmetic (integers and reals)
- *Definitions* à la ML
 - logic (i.e. pure) *functions, predicates*
 - structured types, pattern-matching (to be seen in this lecture)
- *type polymorphism* à la ML
- *higher-order logic as a built-in theory of functions*
- Axiomatizations
- Inductive predicates (not detailed here)

Important note

Logic functions and predicates are *always totally defined*
Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```plaintext
q <- 0; r <- x;
while r >= y do
    invariant { x = q * y + r }
    r <- r - y; q <- q + 1
```
Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

\[
\begin{align*}
 & r \leftarrow x; \\
 \textbf{while } & r \geq y \textbf{ do} \\
 & \textbf{invariant } \{ \text{exists } q. \ x = q \times y + r \} \\
 & r \leftarrow r - y; \\
\end{align*}
\]

(See Why3 file \texttt{euclidean_rem.mlw})
Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

\[
q \leftarrow 0; \quad r \leftarrow x; \\
\text{while } r \geq y \text{ do} \\
\quad \text{invariant } \{ x = q \ast y + r \} \\
\quad r \leftarrow r - y; \quad q \leftarrow q + 1
\]
Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```plaintext
q <- 0; r <- x;
while r >= y do
  invariant { x = q * y + r }
  r <- r - y; q <- q + 1
```

Ghost code, ghost variables

- Cannot interfere with regular code (checked by typing)
- Visible only in annotations

See also `euclidean_rem_with_ghost.mlw`
Home Work: Bézout coefficients

- Extend the post-condition of Euclid’s algorithm for GCD to express the Bézout property:

 \[\exists a, b, \text{result} = x \times a + y \times b \]

- Prove the program by adding appropriate ghost local variables

Use canvas file `exo_bezout.mlw`
If the program f is

- **Proved terminating**
- **Has no side effects**

then there exists a logic function:

\[
\text{function } f \, \tau_1 \ldots \tau_n : \tau \\
\text{lemma } f_{\text{spec}} : \forall x_1, \ldots, x_n. \ Pre \rightarrow Post[\text{result} \leftarrow f(x_1, \ldots, x_n)]
\]

and if $Body$ is a pure term then

\[
\text{lemma } f_{\text{body}} : \forall x_1, \ldots, x_n. \ Pre \rightarrow f(x_1, \ldots, x_n) = Body
\]
Example: axiom-free specification of factorial

let function fact (n:int) : int
 requires { n >= 0 }
 variant { n }
 = if n=0 then 1 else n * fact(n-1)

generates the logic context

function fact int : int

axiom f_body: forall n. n >= 0 ->
 fact n = if n=0 then 1 else n * fact(n-1)
Example of Factorial

Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```ocaml
let fact_imp (x:int): int
    requires ?
    ensures ?
body
    let ref y = 0 in
    let ref res = 1 in
    while y < x do
        y <- y + 1;
        res <- res * y
    done;
    res
```

See file fact.mlw
More Ghosts: Lemma functions

- if a program function is *without side effects* and *terminating*:

 \[\text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \text{unit} \]

 requires *Pre*

 variant *var*, \(\prec \)

 ensures *Post*

 body *Body*

 then it is a proof of

 \[\forall x_1, \ldots, x_n. \text{Pre} \rightarrow \text{Post} \]

- If \(f \) is recursive, it simulates a proof by induction
Example: sum of odds

```plaintext
function sum_of_odd_numbers int : int
(** 'sum_of_odd_numbers n' denote the sum of odd numbers from '1' to '2n-1' *)

axiom sum_of_odd_numbers_base : sum_of_odd_numbers 0 = 0

axiom sum_of_odd_numbers_rec : forall n. n >= 1 ->
  sum_of_odd_numbers n = sum_of_odd_numbers (n-1) + 2*n-1

goal sum_of_odd_numbers_any:
  forall n. n >= 0 -> sum_of_odd_numbers n = n * n

See file arith_lemma_function.mlw
```
Example: sum of odds as lemma function

```ml
let rec lemma sum_of_odd_numbers_any (n:int)
  requires { n >= 0 }
  variant { n }
  ensures { sum_of_odd_numbers n = n * n }
  = if n > 0 then sum_of_odd_numbers_any (n-1)
```

Home work

Prove the helper lemmas stated for the fast exponentiation algorithm

See `power_int_lemma_functions.mlw`
Prove Fermat's little theorem for case $p = 3$:

$$\forall x, \exists y. x^3 - x = 3y$$

using a lemma function

See little_fermat_3.mlw
Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Sum Types

- Sum types à la ML:

```ocaml
type t =
| C_1 \tau_{1,1} \cdots \tau_{1,n_1}
| 
| \vdots
| C_k \tau_{k,1} \cdots \tau_{k,n_k}
```
Sum Types

- Sum types à la ML:

  ```
  type t =
  | C_1 \tau_{1,1} \cdots \tau_{1,n_1}
  | ...
  | C_k \tau_{k,1} \cdots \tau_{k,n_k}
  ```

- Pattern-matching with

  ```
  match e with
  | C_1(p_1, \cdots, p_{n_1}) \rightarrow e_1
  | ...
  | C_k(p_1, \cdots, p_{n_k}) \rightarrow e_k
  end
  ```
Sum Types

- Sum types à la ML:
  ```ml
  type t =
      | C₁ τ₁₁ · · · τ₁,n₁
      | ...
      | Cₖ τₖ₁ · · · τₖ,nₖ
  ```

- Pattern-matching with
  ```ml
  match e with
      | C₁(p₁, · · · , pₙ₁) → e₁
      | ...
      | Cₖ(p₁, · · · , pₙₖ) → eₖ
  end
  ```

- Extended pattern-matching, wildcard: _
Recursive Sum Types

- Sum types can be **recursive**.
- Recursive definitions of functions or predicates
 - Must terminate (only total functions in the logic)
 - In practice in Why3: recursive calls only allowed on structurally smaller arguments.
Sum Types: Example of Lists

```ocaml
type list 'a = Nil | Cons 'a (list 'a)

function append(l1:list 'a,l2:list 'a): list 'a =
  match l1 with
  | Nil -> l2
  | Cons(x,l) -> Cons(x, append(l,l2))
end

function length(l:list 'a): int =
  match l with
  | Nil -> 0
  | Cons(_,r) -> 1 + length r
end

function rev(l:list 'a): list 'a =
  match l with
  | Nil -> Nil
  | Cons(x,r) -> append(rev(r), Cons(x,Nil))
end
```
Example: Efficient List Reversal

Exercise: fill the holes below.

```ocaml
val ref l: list int

let rev_append (r: list int)
    variant ? writes ? ensures ?
body
    match r with
    | Nil -> ()
    | Cons(x, r) -> l <- Cons(x, l); rev_append(r)
end

let reverse (r: list int)
    writes l ensures l = rev r
body ?
```

See `rev.mlw`
Binary Trees

```ocaml
type tree 'a = Leaf | Node (tree 'a) 'a (tree 'a)
```

Homework: specify, implement, and prove a procedure returning the maximum of a tree of integers.

Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Exceptions

We extend the syntax of expressions with

\[e ::= \text{raise } exn \]
\[\text{with } e \text{ with } exn \rightarrow e \]

with \textit{exn} a set of exception identifiers, declared as

\texttt{exception exn <type>}

Remark: \texttt{<type>} can be omitted if it is unit
Example: linear search revisited in \texttt{lin_search_exc.mlw}
Operational Semantics

► Values (i.e. expressions that do not reduce): now either constants v or raise exn

► Context rules

Assuming that sub-expressions are introduced with “let”, e.g. $e_1 + e_2$ written as

$$\text{let } v_1 = e_1 \text{ in let } v_2 = e_2 \text{ in } v_1 + v_2$$

then context rules are essentially given by the propagation of thrown exceptions inside “let”:

$$\Sigma, \pi, (\text{let } x = \text{raise exn in } e) \leadsto \Sigma, \pi, \text{raise exn}$$
Operational Semantics: main rules

- Reduction of try-with:

\[\Sigma, \pi, e \leadsto \Sigma', \pi', e' \]
\[\Sigma, \pi, (\text{try } e \text{ with } \text{exn} \rightarrow e'') \leadsto \Sigma', \pi', (\text{try } e' \text{ with } \text{exn} \rightarrow e'') \]
Operational Semantics: main rules

▶ Reduction of try-with:

\[
\Sigma, \pi, e \leadsto \Sigma', \pi', e'
\]

\[
\Sigma, \pi, (\text{try } e \text{ with } \text{exn } \rightarrow e'') \leadsto \Sigma', \pi', (\text{try } e' \text{ with } \text{exn } \rightarrow e'')
\]

▶ Normal execution:

\[
\Sigma, \pi, (\text{try } v \text{ with } \text{exn } \rightarrow e') \leadsto \Sigma, \pi, v
\]

▶ Exception handling:

\[
\Sigma, \pi, (\text{try raise exn with } \text{exn } \rightarrow e) \leadsto \Sigma, \pi, e
\]

\[
\begin{align*}
\text{exn} & \neq \text{exn}' \\
\Sigma, \pi, (\text{try raise exn with } \text{exn}' \rightarrow e) & \leadsto \Sigma, \pi, \text{raise exn}
\end{align*}
\]
Function WP modified to allow exceptional post-conditions too:

\[WP(e, Q, exn_i \rightarrow R_i) \]

Implicitly, \(R_k = False \) for any \(exn_k \not\in \{ exn_i \} \).
Function WP modified to allow exceptional post-conditions too:

\[\text{WP}(e, Q, \text{exn}_i \rightarrow R_i) \]

Implicitly, \(R_k = False \) for any \(\text{exn}_k \not\in \{ \text{exn}_i \} \).

Extension of WP for simple expressions:

\[\text{WP}(x \leftarrow t, Q, \text{exn}_i \rightarrow R_i) = Q[\text{result} \leftarrow (), x \leftarrow t] \]

\[\text{WP}(\text{assert } R, Q, \text{exn}_i \rightarrow R_i) = R \land Q \]
WP Rules

Extension of WP for composite expressions:

\[
\text{WP}(\text{let } x = e_1 \text{ in } e_2, Q, \text{exn}_i \rightarrow R_i) = \\
\quad \text{WP}(e_1, \text{WP}(e_2, Q, \text{exn}_i \rightarrow R_i)[\text{result } \leftarrow x], \text{exn}_i \rightarrow R_i)
\]

\[
\text{WP}(\text{if } t \text{ then } e_1 \text{ else } e_2, Q, \text{exn}_i \rightarrow R_i) = \\
\quad \text{if } t \text{ then } \text{WP}(e_1, Q, \text{exn}_i \rightarrow R_i) \\
\quad \text{else } \text{WP}(e_2, Q, \text{exn}_i \rightarrow R_i)
\]

\[
\text{WP}\left(\begin{array}{c}
\text{while } c \text{ invariant } I \\
\text{do } e
\end{array}, Q, \text{exn}_i \rightarrow R_i\right) = I \land \forall \vec{v},
\]

\[
(I \rightarrow \text{if } c \text{ then } \text{WP}(e, I, \text{exn}_i \rightarrow R_i) \text{ else } Q)[w_i \leftarrow v_i]
\]

where \(w_1, \ldots, w_k \) is the set of assigned variables in \(e \) and \(v_1, \ldots, v_k \) are fresh logic variables.
Exercise: propose rules for

\[WP(\text{raise } exn, Q, exn_i \rightarrow R_i) \]

and

\[WP(\text{try } e_1 \text{ with } exn \rightarrow e_2, Q, exn_i \rightarrow R_i) \]
WP Rules

\[
WP(\text{raise } \text{exn}_k, Q, \text{exn}_i \rightarrow R_i) = R_k
\]

\[
WP((\text{try } e_1 \text{ with } \text{exn} \rightarrow e_2), Q, \text{exn}_i \rightarrow R_i) =
\]

\[
WP(e_1, Q, \left\{ \begin{array}{l}
\text{exn} \rightarrow WP(e_2, Q, \text{exn}_i \rightarrow R_i) \\
\text{exn}_i \backslash \text{exn} \rightarrow R_i
\end{array} \right. \)
\]
Functions Throwing Exceptions

Generalized contract:

\[
\text{val } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau
\]

requires \(Pre\)

writes \(\vec{w}\)

ensures \(Post\)

raises \(E_1 \rightarrow Post_1\)

\vdots

raises \(E_n \rightarrow Post_n\)

Extended WP rule for function call:

\[
WP(f(t_1, \ldots, t_n), Q, E_k \rightarrow R_k) = Pre[x_i \leftarrow t_i] \land \forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j] \rightarrow Q[w_j \leftarrow v_j]) \land \\
\land_k(\text{Post}_k[x_i \leftarrow t_i, w_j \leftarrow v_j] \rightarrow R_k[w_j \leftarrow v_j])
\]
Verification Conditions for programs

For each function defined with generalized contract

\[
\text{let } f(x_1: \tau_1, \ldots, x_n: \tau_n): \tau \\
\text{ requires } Pre \\
\text{ writes } \vec{w} \\
\text{ ensures } Post \\
\text{ raises } E_1 \rightarrow Post_1 \\
\vdots \\
\text{ raises } E_n \rightarrow Post_n \\
\text{ body } Body
\]

we have to check

- Variables assigned in \textit{Body} belong to \vec{w}
- \textit{Pre} \rightarrow WP(Body, Post, E_k \rightarrow Post_k)[w_i@Old \leftarrow w_i] \text{ holds}
Example: “Defensive” variant of ISQRT

```
exception NotSquare

let isqrt(x:int): int
   ensures result >= 0 \sqr(result) = x
   raises NotSquare -> forall n:int. sqr(n) <> x
body
   if x < 0 then raise NotSquare;
   let ref res = 0 in
   let ref sum = 1 in
   while sum <= x do
      res <- res + 1; sum <- sum + 2 * res + 1
   done;
   if sqr(res) <> x then raise NotSquare;
   res
```

See Why3 version in isqrt_exc.mlw
Implement and prove binary search using also a immediate exit:

\[
low = 0; \quad high = a.length - 1;
\]

while \(low \leq high \):

\[
\text{let } m \text{ be the middle of } low \text{ and } high
\]

if \(a[m] = v \) then return \(m \)

if \(a[m] < v \) then continue search between \(m \) and \(high \)

if \(a[m] > v \) then continue search between \(low \) and \(m \)

(see bin_search_exc.mlw)
Outline

Reminders, Solutions to Exercises
 Reminder: Function Calls
 Reminder: Termination
 Reminder: Programs on Arrays

Specification Language and Ghost Code
 Ghost code
 Ghost Functions
 Lemma functions

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
32-, 64-bit signed integers in two-complement: may overflow

- $2147483647 + 1 \rightarrow -2147483648$
- $100000^2 \rightarrow 1410065408$
Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
 - $2^{31} + 1 \rightarrow -2^{32}
 - $100000^2 \rightarrow 1410065408$

- floating-point numbers (32-, 64-bit):
 - overflows
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\infty$
 - $-1/0 \rightarrow -\infty$
 - $0/0 \rightarrow \text{NaN}$
Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
 - $2147483647 + 1 \rightarrow -2147483648$
 - $100000^2 \rightarrow 1410065408$

- floating-point numbers (32-, 64-bit):
 - overflows
 - $2 \times 2 \times \cdots \times 2 \rightarrow +inf$
 - $-1 / 0 \rightarrow -inf$
 - $0 / 0 \rightarrow NaN$
 - rounding errors
 - $0.1 + 0.1 + \cdots + 0.1 = 1.0 \rightarrow false$
 (because $0.1 \rightarrow 0.100000001490116119384765625$ in 32-bit)

See also arith.c
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.

- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays 1×850 as 100000.
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays 77.1×850 as 100000.
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

 Internal clock ticks every 0.1 second.
 Time is tracked by fixed-point arith.: $0.1 \approx 209715 \cdot 2^{-24}$.
 Cumulated skew after 24h: $-0.08s$, distance: 160m.
 System was supposed to be rebooted periodically.

- 2007, Excel displays 77.1×850 as 100000.

 Bug in binary/decimal conversion.
 Failing inputs: 12 FP numbers.
 Probability to uncover them by random testing: 10^{-18}.
Integer overflow: example of Binary Search

Google “Read All About It: Nearly All Binary Searches and Mergesorts are Broken”

```ocaml
let ref l = 0 in
let ref u = a.length - 1 in
while l <= u do
  let m = (l + u) / 2 in
  ...
```

$l + u$ may overflow with large arrays!

Goal
prove that a program is safe with respect to overflows
32-bit signed integers in two-complement representation: integers between \(-2^{31}\) and \(2^{31} - 1\).

If the mathematical result of an operation fits in that range, that is the computed result.

Otherwise, an overflow occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.
Safety Checking

Idea: replace all arithmetic operations by abstract functions with preconditions. \(x + y \) becomes \texttt{int32_add}(x, y).

\begin{verbatim}
val int32_add(x: int, y: int): int
 requires -2^31 <= x + y < 2^31
 ensures result = x + y
\end{verbatim}

Unsatisfactory: range constraints of integer must be added explicitly everywhere
Safety Checking, Second Attempt

Idea:
- replace type `int` with an abstract type `int32`
- introduce a *projection* from `int32` to `int`
- axiom about the *range* of projections of `int32` elements
- replace all operations by abstract functions with preconditions

```
type int32
function to_int(x: int32): int
axiom bounded_int32:
   forall x: int32. -2^31 <= to_int(x) < 2^31

val int32_add(x: int32, y: int32): int32
   requires -2^31 <= to_int(x) + to_int(y) < 2^31
   ensures to_int(result) = to_int(x) + to_int(y)
```
Binary Search with overflow checking

See bin_search_int32.mlw
Binary Search with overflow checking

See `bin_search_int32.mlw`

Application

Used for translating mainstream programming language into Why3:

- From C to Why3: Frama-C, Jessie plug-in
 See `bin_search.c`
- From Java to Why3: Krakatoa
- From Ada to Why3: Spark2014
Floating-Point Arithmetic

- Limited range \Rightarrow exceptional behaviors.
- Limited precision \Rightarrow inaccurate results.
Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1 + w_e + w_m = 32$, or 64, or 128.
Bias: $2^{w_e - 1} - 1$. Precision: $p = w_m + 1$.

A floating-point datum

<table>
<thead>
<tr>
<th>sign s</th>
<th>biased exponent e' (w_e bits)</th>
<th>mantissa m (w_m bits)</th>
</tr>
</thead>
</table>

represents
IEEE-754 Binary Floating-Point Arithmetic.
Width: $1 + w_e + w_m = 32$, or 64, or 128.
Bias: $2^{w_e-1} - 1$. Precision: $p = w_m + 1$.

A floating-point datum

<table>
<thead>
<tr>
<th>sign s</th>
<th>biased exponent e' (w_e bits)</th>
<th>mantissa m (w_m bits)</th>
</tr>
</thead>
</table>

represents

- if $0 < e' < 2^{w_e} - 1$, the real $(-1)^s \cdot 1.m' \cdot 2^{e' - bias}$, normal
- if $e' = 0$,
 - ± 0 if $m' = 0$, zeros
 - the real $(-1)^s \cdot 0.m' \cdot 2^{-bias+1}$ otherwise, subnormal
- if $e' = 2^{w_e} - 1$,
 - $(-1)^s \cdot \infty$ if $m' = 0$, infinity
 - Not-a-Number otherwise.
Floating-Point Data

\[\begin{align*}
\begin{array}{c|c|c}
1 & 11000110 & 10010011110000111000000 \\
\hline s & e & f
\end{array}
\end{align*} \]

\[(-1)^s \times 2^{e-B} \times 1.f \]

\[(-1)^1 \times 2^{198-127} \times 1.10010011110000111000000_2 \]

\[-2^{54} \times 206727 \approx -3.7 \times 10^{21} \]
IEEE-754 standard

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Rounding of a real number x:

Overflows are not considered when defining rounding: exponents are supposed to have no upper bound!
Specifications, main ideas

Same as with integers, we specify FP operations so that no overflow occurs.

\[
\begin{align*}
\text{constant} & \quad \text{max} : \text{real} = 0x1.FFFFFEp127 \\
\text{predicate} & \quad \text{in_float32} \ (x:\text{real}) = \text{abs} \ x \leq \text{max} \\
\text{type} & \quad \text{float32} \\
\text{function} & \quad \text{to_real} (x: \text{float32}) : \text{real} \\
\text{axiom} & \quad \text{float32_range: for} \forall x: \text{float32}. \text{in_float32} \ (\text{to_real} \ x) \\
\text{function} & \quad \text{round32} (x: \text{real}) : \text{real} \\
& \quad (* \ ... \ axioms \ about \ \text{round32} \ ... \ *) \\
\text{function} & \quad \text{float32_add} (x: \text{float32}, y: \text{float32}) : \text{float32} \\
& \quad \text{requires} \ \text{in_float32} (\text{round32} (\text{to_real} \ x + \text{to_real} \ y)) \\
& \quad \text{ensures} \ \text{to_real} \ \text{result} = \text{round32} \ (\text{to_real} \ x + \text{to_real} \ y)
\end{align*}
\]
Specifications in practice

- Several possible rounding modes
- many axioms for round32, but incomplete anyway

Demo: clock_drift.c
Deductive verification nowadays

More native support in SMT solvers:
- **bitvectors** supported by CVC4, Z3, others
- **theory of floats** supported by Z3, CVC4, MathSAT

Using such a support for deductive program verification remains an open research topic
- Issues when bitvectors/floats are mixed with other features: conversions, arrays, quantification

Fumex et al. (2016) C. Fumex, C. Dross, J. Gerlach, C. Marché. Specification and proof of high-level functional properties of bit-level programs. 8th NASA Formal Methods Symposium, LNCS 9690 Science