More data types (lists, trees)
Handling Exceptions
Computer Arithmetic

Claude Marché

Cours MPRI 2-36-1 “Preuve de Programme”

6 janvier 2021
Outline

Reminders, Solutions to Exercises
 Function calls
 Termination
 Axiomatizations, Ghost Code
 Ghost Functions, Lemma Functions
 Programs on Arrays

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Outline

Reminders, Solutions to Exercises
 Function calls
 Termination
 Axiomatizations, Ghost Code
 Ghost Functions, Lemma Functions
 Programs on Arrays

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Function Calls

let $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires Pre
 writes \vec{w}
 ensures $Post$
body $Body$

$$WP(f(t_1, \ldots, t_n), Q) = Pre[x_i \leftarrow t_i] \land$$
$$\forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j@Old \leftarrow w_j] \rightarrow Q[w_j \leftarrow v_j])$$

Modular proof

When calling function f, only the contract of f is visible, not its body
Soundness Theorem for a Complete Program

Assuming that for each function defined as

\[f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \]

requires \(\text{Pre} \)
writes \(\vec{w} \)
ensures \(\text{Post} \)
body \(\text{Body} \)

we have

1. variables assigned in \(\text{Body} \) belong to \(\vec{w} \),
2. \(\models \text{Pre} \rightarrow \text{WP(\text{Body, Post})}[w_i \leftarrow \text{Old} \leftarrow w_i] \) holds,

then for any formula \(Q \) and any expression \(e \),
if \(\Sigma, \Pi \models \text{WP}(e, Q) \) then execution of \(\Sigma, \Pi, e \) is safe

Remark: (mutually) recursive functions are allowed
Termination

- Loop *variant*
- *Variants* for (mutually) recursive function(s)
Home Work 1: McCarthy’s 91 Function

\[f_{91}(n) = \begin{cases}
 f_{91}(f_{91}(n + 11)) & \text{if } n \leq 100 \\
 n - 10 & \text{else}
\end{cases} \]

Find adequate specifications

```ml
let f91(n:int): int 
  requires \_?
  variant \_?
  writes \_?
  ensures \_?
body 
  if n ≤ 100 then f91(f91(n + 11)) else n - 10
```

Use canvas file `mccarthy.mlw`
Why3 Logic Language

- (First-order) logic, built-in arithmetic (integers and reals)
- *Definitions* à la ML
 - logic (i.e. pure) *functions, predicates*
 - structured types, pattern-matching (this lecture!)
- *type polymorphism* à la ML
- *higher-order logic as a built-in theory of functions*
- Axiomatizations
- Inductive predicates (not detailed here)

Important note
Logic functions and predicates are *always totally defined*
Ghost Code

Ghost code, ghost variables

- Cannot interfere with regular code (checked by typing)
- Visible only in annotations
Home Work 2

- Extend the post-condition of Euclid’s algorithm for GCD to express the Bézout property:

 \[\exists a, b, \text{result} = x \times a + y \times b \]

- Prove the program by adding appropriate ghost local variables

Use canvas file `exo_bezout.mlw`
Axiomatic Definitions

- logic functions, predicates without body
- axioms to specify their behavior
- axiomatic types
- Risk of inconsistency

Example: division

```
function div(real,real):real

axiom mul_div:
  forall x,y. y ≠ 0 → div(x,y)*y = x
```

Error “Division by zero” can be modeled by an abstract function

```
val div_real(x:real,y:real):real

  requires y ≠ 0.0
  ensures result = div(x,y)
```

Reminder

Execution blocks when an invalid annotation is met
More Ghosts: Programs turned into Logic Functions

If the program f is

- **Proved terminating**
- **Has no side effects**

then there exists a logic function:

```
let $f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau$
 requires $Pre$
 variant $\text{var}, \prec$
 ensures $Post$
 body $\text{Body}$
```

```plaintext
\begin{align*}
\text{function } f \; &τ_1 \ldots \; τ_n : \; τ \\
\text{lemma } f_{\text{spec}} : \forall x_1, \ldots, x_n. \; Pre \rightarrow Post[\text{result} \leftarrow f(x_1, \ldots, x_n)]
\end{align*}
```

and if Body is a pure term then

```
\text{lemma } f_{\text{body}} : \forall x_1, \ldots, x_n. \; Pre \rightarrow f(x_1, \ldots, x_n) = \text{Body}
```

Offers an important alternative to axiomatic definitions

In Why3: done using keywords `let function`
Example: axiom-free specification of factorial

```plaintext
let function fact (n:int) : int
  requires { n ≥ 0 }
  variant { n }
= if n=0 then 1 else n * fact(n-1)
```

generates the logic context

```plaintext
function fact int : int

axiom f_body: forall n. n ≥ 0 →
  fact n = if n=0 then 1 else n * fact(n-1)
```
Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```ocaml
let fact_imp (x:int): int
    requires ?
    ensures ?
body
    let ref y = 0 in
    let ref res = 1 in
    while y < x do
        y <- y + 1;
        res <- res * y
    done;
    res
```

See file `fact.mlw`
More Ghosts: Lemma functions

- if a program function is *without side effects* and *terminating*:

 let $f(x_1: \tau_1, \ldots, x_n: \tau_n): \text{unit}$
 requires Pre
 variant var, \prec
 ensures $Post$
 body $Body$

 then it is a proof of

 $\forall x_1, \ldots, x_n. Pre \rightarrow Post$

- If f is recursive, it simulates a proof by induction
Home work 3

Prove the helper lemmas stated for the fast exponentiation algorithm

See power_int_lemma_functions.mlw
Prove Fermat’s little theorem for case $p = 3$:

$$\forall x, \exists y. x^3 - x = 3y$$

using a lemma function

See `little_fermat_3.mlw`
Programs on Arrays

- applicative maps as a built-in theory
- array = record (length, pure map)
- handling of out-of-bounds index check

```
type array α = { length : int; elts : int → α} 

val get (ref a:array α) (i:int) : α 
    requires 0 ≤ i < a.length 
    ensures result = select(a.elts,i) 

val set (ref a:array α) (i:int) (v:α) : unit 
    requires 0 ≤ i < a.length 
    writes a 
    ensures a.length = a@Old.length ∧ 
        a.elts = store(a@Old.elts,i,v) 
```

- a[i] interpreted as a call to get(a,i)
- a[i] <- v interpreted as a call to set(a,i,v)
Exercise: Search Algorithms

```ml
var a: array real

let search(v:real): int
    requires 0 ≤ a.length
    ensures { ? } = ?
```

1. Formalize postcondition: if \(v \) occurs in \(a \), between 0 and \(a.length - 1 \), then result is an index where \(v \) occurs, otherwise result is set to \(-1\)

2. Implement and prove *linear search*:

   ```ml
   res ← -1;
   for each i from 0 to a.length - 1: if a[i] = v then res ← i;
   return res
   ```

See file `lin_search.mlw`
Home Work: Binary Search

\[\text{low} = 0; \text{high} = a.length - 1; \]
while \(\text{low} \leq \text{high} \):
 let \(m \) be the middle of \(\text{low} \) and \(\text{high} \)
 if \(a[m] = v \) then return \(m \)
 if \(a[m] < v \) then continue search between \(m \) and \(\text{high} \)
 if \(a[m] > v \) then continue search between \(\text{low} \) and \(m \)

See file bin_search.mlw
Home Work: “for” loops

Syntax: \(\text{for } i = e_1 \text{ to } e_2 \text{ do } e \)

Typing:
- \(i \) visible only in \(e \), and is immutable
- \(e_1 \) and \(e_2 \) must be of type \textit{int}, \(e \) must be of type \textit{unit}

Operational semantics:
(assuming \(e_1 \) and \(e_2 \) are values \(v_1 \) and \(v_2 \))

\[
\frac{v_1 > v_2}{\Sigma, \Pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \Pi, ()}
\]

\[
\frac{v_1 \leq v_2}{\Sigma, \Pi, \text{for } i = v_1 \text{ to } v_2 \text{ do } e \leadsto \Sigma, \Pi, (\text{let } i = v_1 \text{ in } e); (\text{for } i = v_1 + 1 \text{ to } v_2 \text{ do } e)}
\]
Propose a Hoare logic rule for the for loop:

\[
\{?\} e \{?\} \\
\{?\} for \ i = v_1 \ to \ v_2 \ do \ e \{?\}
\]

Propose a rule for computing the WP:

\[
WP(for \ i = v_1 \ to \ v_2 \ invariant \ I \ do \ e, Q) = ?
\]
Home Work: “for” loops

Notice: loop invariant \(I \) typically has \(i \) as a free variable

Informal vision of execution, stating when invariant is supposed to hold and for which value of \(i \):

\[
\begin{align*}
\{ & I[i \leftarrow v1] \} \\
& i \leftarrow v1 \\
\{ & / \} \\
& e \\
& \{ & I[i \leftarrow i + 1] \} \\
& i \leftarrow i + 1 \\
\{ & / \} \\
& e \\
& \vdots \\
\{ & / \} \\
& e \\
& \{ & I[i \leftarrow i + 1] \} \\
& i \leftarrow i + 1 \\
(* \text{assuming now } i = v2, \text{ last iteration} *) \\
\{ & / \}(* \text{where } i = v2 *) \\
& e \\
& \{ & I[i \leftarrow i + 1] \}(* \text{and still } i=v2, \text{ hence} *) \\
& \{ & I[i \leftarrow v2 + 1] \}
\end{align*}
\]
Home Work: “for” loops

So we deduce the Hoare logic rule

\[
\{ I \land v_1 \leq i \leq v_2 \} e \{ I[i \leftarrow i + 1] \} \\
\{ I[i \leftarrow v_1] \land v_1 \leq v_2 \} \text{for } i = v_1 \text{ to } v_2 \text{ do } e \{ I[i \leftarrow v_2 + 1] \}
\]

Remark

Some rule should be stated for case \(v_1 > v_2 \), left as exercise

and then a rule for computing the WP:

\[
WP(\text{for } i = v_1 \text{ to } v_2 \text{ invariant } I \text{ do } e, Q) = \\
v_1 \leq v_2 \land I[i \leftarrow v_1] \land \\
\forall \vec{v}, (\\
(\forall i, I \land v_1 \leq i \leq v_2 \rightarrow WP(e, I[i \leftarrow i + 1])) \land \\
(I[i \leftarrow v_2 + 1] \rightarrow Q))[w_j \leftarrow v_j]
\]

Additional exercise: use a for loop in the linear search example

lin_search_for.mlw
Outline

Reminders, Solutions to Exercises
 Function calls
 Termination
 Axiomatizations, Ghost Code
 Ghost Functions, Lemma Functions
 Programs on Arrays

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Sum Types

- Sum types à la ML:

```haskell
type t =
  | C₁ τ₁,₁ · · · τ₁,n₁
  | ...
  | Cₖ τₖ,₁ · · · τₖ,nₖ
```

- Extended pattern-matching, wildcard:

  ```haskell
  match _ → ...
  ```
Sum Types

- Sum types à la ML:

  ```
  type t =
  |  C_1 \tau_{1,1} \cdots \tau_{1,n_1}
  |  \vdots
  |  C_k \tau_{k,1} \cdots \tau_{k,n_k}
  ```

- Pattern-matching with

  ```
  match e with
  |  C_1(p_1, \cdots, p_{n_1}) \rightarrow e_1
  |  \vdots
  |  C_k(p_1, \cdots, p_{n_k}) \rightarrow e_k
  end
  ```
Sum Types

▶ Sum types à la ML:

```
type t =
  | C₁ τ₁,₁ ⋯ τ₁,n₁
  | ⋮
  | Cₖ τₖ,₁ ⋯ τₖ,nₖ
```

▶ Pattern-matching with

```
match e with
| C₁(p₁, ⋯ , pₙ₁) → e₁
| ⋮
| Cₖ(p₁, ⋯ , pₙₖ) → eₖ
end
```

▶ Extended pattern-matching, wildcard: _
Recursive Sum Types

- Sum types can be recursive.
- Recursive definitions of functions or predicates
 - Must terminate (only total functions in the logic)
 - In practice in Why3: recursive calls only allowed on structurally smaller arguments.
Sum Types: Example of Lists

definition

\textbf{type} \ list \ \alpha = \text{Nil} \mid \text{Cons} \ \alpha \ (\text{list} \ \alpha)

\textbf{function} \ append(l1:\text{list} \ \alpha,l2:\text{list} \ \alpha): \text{list} \ \alpha =
 \begin{align*}
 &\text{match} \ l1 \ \text{with} \\
 &| \ \text{Nil} \ \rightarrow \ l2 \\
 &| \ \text{Cons}(x,l) \ \rightarrow \ \text{Cons}(x, \ append(l,l2))
 \end{align*}

\textbf{function} \ length(l:\text{list} \ \alpha): \text{int} =
 \begin{align*}
 &\text{match} \ l \ \text{with} \\
 &| \ \text{Nil} \ \rightarrow \ 0 \\
 &| \ \text{Cons}(_,r) \ \rightarrow \ 1 + \ length \ r
 \end{align*}

\textbf{function} \ rev(l:\text{list} \ \alpha): \text{list} \ \alpha =
 \begin{align*}
 &\text{match} \ l \ \text{with} \\
 &| \ \text{Nil} \ \rightarrow \ \text{Nil} \\
 &| \ \text{Cons}(x,r) \ \rightarrow \ \text{append}(rev(r), \ \text{Cons}(x,\text{Nil}))
 \end{align*}
“In-place” List Reversal

Exercise: fill the holes below.

val ref l: list int

let rev_append(r:list int)
 variant ? writes ? ensures ?
body
 match r with
 | Nil → ()
 | Cons(x,r) → l <- Cons(x,l); rev_append(r)
end

let reverse(r:list int)
 writes l ensures l = rev r
body ?

See rev.mlw
Binary Trees

```
type tree α = Leaf | Node (tree α) α (tree α)
```

Home work: specify, implement, and prove a procedure returning the maximum of a tree of integers.

Outline

Reminders, Solutions to Exercises
 Function calls
 Termination
 Axiomatizations, Ghost Code
 Ghost Functions, Lemma Functions
 Programs on Arrays

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Exceptions

We extend the syntax of expressions with

\[
e ::= \text{raise } \text{exn} \\
 \mid \text{try } e \text{ with } \text{exn} \rightarrow e
\]

with \text{exn} a set of exception identifiers, declared as

\text{exception \ exn \ <type>}

Remark: \text{<type>} can be omitted if it is \text{unit}
Example: linear search revisited in \text{lin_search_exc.mlw}
Operational Semantics

- Values: either constants v or $\text{raise } exn$

Propagation of thrown exceptions:

$\Sigma, \Pi, (\text{let } x = \text{raise } exn \text{ in } e) \leadsto \Sigma, \Pi, \text{raise } exn$
Operational Semantics

- Values: either constants \(v \) or \(\text{raise } \text{exn} \)

Propagation of thrown exceptions:

\[\Sigma, \Pi, (\text{let } x = \text{raise } \text{exn} \text{ in } e) \leadsto \Sigma, \Pi, \text{raise } \text{exn} \]

Reduction of try-with:

\[
\begin{align*}
\Sigma, \Pi, e & \leadsto \Sigma', \Pi', e' \\
\Sigma, \Pi, (\text{try } e \text{ with } \text{exn } \rightarrow e'') & \leadsto \Sigma', \Pi', (\text{try } e' \text{ with } \text{exn } \rightarrow e'')
\end{align*}
\]
Operational Semantics

- Values: either constants v or $\text{raise } exn$

Propagation of thrown exceptions:

$$\Sigma, \Pi, (\text{let } x = \text{raise } exn \text{ in } e) \rightsquigarrow \Sigma, \Pi, \text{raise } exn$$

Reduction of try-with:

$$\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$$

$$\Sigma, \Pi, (\text{try } e \text{ with } exn \to e'') \rightsquigarrow \Sigma', \Pi', (\text{try } e' \text{ with } exn \to e'')$$

Normal execution:

$$\Sigma, \Pi, (\text{try } v \text{ with } exn \to e') \rightsquigarrow \Sigma, \Pi, v$$
Operational Semantics

- Values: either constants ν or raise exn

Propagation of thrown exceptions:

$$\Sigma, \Pi, (\text{let } x = \text{raise exn in } e) \leadsto \Sigma, \Pi, \text{raise exn}$$

Reduction of try-with:

$$\Sigma, \Pi, e \leadsto \Sigma', \Pi', e'$$

$$\Sigma, \Pi, (\text{try } e \text{ with } exn \rightarrow e'') \leadsto \Sigma', \Pi', (\text{try } e' \text{ with } exn \rightarrow e'')$$

Normal execution:

$$\Sigma, \Pi, (\text{try } \nu \text{ with } exn \rightarrow e') \leadsto \Sigma, \Pi, \nu$$

Exception handling:

$$\Sigma, \Pi, (\text{try } \text{raise exn with } exn \rightarrow e) \leadsto \Sigma, \Pi, e$$

$$exn \neq exn'$$

$$\Sigma, \Pi, (\text{try } \text{raise exn with } exn' \rightarrow e) \leadsto \Sigma, \Pi, \text{raise exn}$$
Function WP modified to allow exceptional post-conditions too:

\[
WP(e, Q, exn_i \rightarrow R_i)
\]

Implicitly, \(R_k = False \) for any \(exn_k \not\in \{exn_i\} \).
Function WP modified to allow exceptional post-conditions too:

\[WP(e, Q, exn_i \rightarrow R_i) \]

Implicitly, \(R_k = False \) for any \(exn_k \not\in \{exn_i\} \).

Extension of WP for simple expressions:

\[WP(x \leftarrow t, Q, exn_i \rightarrow R_i) = Q[result \leftarrow (), x \leftarrow t] \]

\[WP(\text{assert } R, Q, exn_i \rightarrow R_i) = R \land Q \]
WP Rules

Extension of WP for composite expressions:

\[
\text{WP}(\text{let } x = e_1 \text{ in } e_2, Q, \text{exn}_i \rightarrow R_i) = \\
\text{WP}(e_1, \text{WP}(e_2, Q, \text{exn}_i \rightarrow R_i)[\text{result } \leftarrow x], \text{exn}_i \rightarrow R_i)
\]

\[
\text{WP}(\text{if } t \text{ then } e_1 \text{ else } e_2, Q, \text{exn}_i \rightarrow R_i) = \\
\text{if } t \text{ then } \text{WP}(e_1, Q, \text{exn}_i \rightarrow R_i) \text{ else } \text{WP}(e_2, Q, \text{exn}_i \rightarrow R_i)
\]

\[
\text{WP}\left(\begin{array}{c}
\text{while } c \text{ invariant } I \\
\text{ do } e
\end{array}, Q, \text{exn}_i \rightarrow R_i\right) = I \land \forall \vec{v}, \\
(I \rightarrow \text{if } c \text{ then } \text{WP}(e, I, \text{exn}_i \rightarrow R_i) \text{ else } Q)[w_i \leftarrow v_i]
\]

where \(w_1, \ldots, w_k \) is the set of assigned variables in \(e \) and \(v_1, \ldots, v_k \) are fresh logic variables.
Exercise: propose rules for

\[WP(\text{raise } exn, Q, exn_i \rightarrow R_i) \]

and

\[WP(\text{try } e_1 \text{ with } exn \rightarrow e_2, Q, exn_i \rightarrow R_i) \]
WP Rules

\[
WP(\text{raise } \text{exn}_k, Q, \text{exn}_i \rightarrow R_i) = R_k
\]

\[
WP(\text{try } e_1 \text{ with } \text{exn} \rightarrow e_2, Q, \text{exn}_i \rightarrow R_i) = \\
WP \left(e_1, Q, \begin{cases}
\text{exn} \rightarrow WP(e_2, Q, \text{exn}_i \rightarrow R_i) \\
\text{exn}_i \setminus \text{exn} \rightarrow R_i
\end{cases} \right)
\]
Functions Throwing Exceptions

Generalized contract:

\[
\text{val } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \\
\text{requires } Pre \\
\text{writes } \vec{w} \\
\text{ensures } Post \\
\text{raises } E_1 \rightarrow Post_1 \\
\vdots \\
\text{raises } E_n \rightarrow Post_n
\]

Extended WP rule for function call:

\[
\text{WP}(f(t_1, \ldots, t_n), Q, E_k \rightarrow R_k) = Pre[x_i \leftarrow t_i] \land \forall \vec{v}, \\
(Post[x_i \leftarrow t_i, w_j \leftarrow v_j] \rightarrow Q[w_j \leftarrow v_j]) \land \\
\land_k (Post_k[x_i \leftarrow t_i, w_j \leftarrow v_j] \rightarrow R_k[w_j \leftarrow v_j])
\]
Verification Conditions for programs

For each function defined with generalized contract

\[
\text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau \\
\text{ requires } Pre \\
\text{ writes } \vec{w} \\
\text{ ensures } Post \\
\text{ raises } E_1 \rightarrow Post_1 \\
\vdots \\
\text{ raises } E_n \rightarrow Post_n \\
\text{ body } Body
\]

we have to check

- Variables assigned in \(Body \) belong to \(\vec{w} \)
- \(Pre \rightarrow \text{WP}(Body, Post, E_k \rightarrow Post_k)[w_i@Old \leftarrow w_i] \) holds
Example: “Defensive” variant of ISQRT

```plaintext
exception NotSquare

let isqrt(x:int): int
    ensures result ≥ 0 ∧ sqr(result) = x
    raises NotSquare → forall n:int. sqr(n) ≠ x

body
    if x < 0 then raise NotSquare;
    let ref res = 0 in
    let ref sum = 1 in
    while sum ≤ x do
        res <- res + 1; sum <- sum + 2 * res + 1
    done;
    if sqr(res) ≠ x then raise NotSquare;
    res
```

See Why3 version in `isqrt_exc.mlw`
Implement and prove binary search using also an immediate exit:

\[\text{low} = 0; \text{high} = a.\text{length} - 1; \]
while \(\text{low} \leq \text{high} \):
 let \(m \) be the middle of \(\text{low} \) and \(\text{high} \)
 if \(a[m] = v \) then return \(m \)
 if \(a[m] < v \) then continue search between \(m \) and \(\text{high} \)
 if \(a[m] > v \) then continue search between \(\text{low} \) and \(m \)

(see \texttt{bin_search_exc.mlw})
Outline

Reminders, Solutions to Exercises
 Function calls
 Termination
 Axiomatizations, Ghost Code
 Ghost Functions, Lemma Functions
 Programs on Arrays

Modeling Continued: Specifying More Data Types
 Sum Types
 Lists

Exceptions

Application: Computer Arithmetic
 Handling Machine Integers
 Floating-Point Computations
Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
 - $2147483647 + 1 \rightarrow \text{overflow}$
 - $100000^2 \rightarrow 1410065408$
Computers and Number Representations

- 32-, 64-bit signed integers in two-complement: may overflow
 - $2147483647 + 1 \rightarrow -2147483648$
 - $100000^2 \rightarrow 1410065408$

- floating-point numbers (32-, 64-bit):
 - overflows
 - $2 \times 2 \times \cdots \times 2 \rightarrow +inf$
 - $-1/0 \rightarrow -inf$
 - $0/0 \rightarrow NaN$

See also arith.c
32-, 64-bit signed integers in two-complement: may overflow
- $2147483647 + 1 \rightarrow -2147483648$
- $100000^2 \rightarrow 1410065408$

Floating-point numbers (32-, 64-bit):
- overflows
 - $2 \times 2 \times \cdots \times 2 \rightarrow +\text{inf}$
 - $-1/0 \rightarrow -\text{inf}$
 - $0/0 \rightarrow \text{NaN}$
- rounding errors
 - $0.1 + 0.1 + \cdots + 0.1 = 1.0 \rightarrow \text{false}$

10 times
(because $0.1 \rightarrow 0.100000001490116119384765625$ in 32-bit)

See also arith.c
Some Numerical Failures

(see more at http://catless.ncl.ac.uk/php/risks/search.php?query=rounding)

▶ 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
Some Numerical Failures

(see more at http://catless.ncl.ac.uk/php/risks/search.php?query=rounding)

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
Some Numerical Failures

(see more at http://catless.ncl.ac.uk/php/risks/search.php?query=rounding)

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
Some Numerical Failures

(see more at http://catless.ncl.ac.uk/php/risks/search.php?query=rounding)

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.
- 1992, Green Party of Schleswig-Holstein seats in Parliament for a few hours, until a rounding error is discovered.
- 1995, Ariane 5 explodes during its maiden flight due to an overflow: insurance cost is $500M.
- 2007, Excel displays 77.1 × 850 as 100000.
Some Numerical Failures

- 1991, during Gulf War 1, a Patriot system fails to intercept a Scud missile: 28 casualties.

 Internal clock ticks every 0.1 second.
 Time is tracked by fixed-point arith.: \(0.1 \approx 209715 \cdot 2^{-24}\).
 Cumulated skew after 24h: \(-0.08s\), distance: 160m.
 System was supposed to be rebooted periodically.

- 2007, Excel displays \(77.1 \times 850\) as 100000.

 Bug in binary/decimal conversion.
 Failing inputs: 12 FP numbers.
 Probability to uncover them by random testing: \(10^{-18}\).
Integer overflow: example of Binary Search

- Google “Read All About It: Nearly All Binary Searches and Mergesorts are Broken”

```ocaml
let ref l = 0 in
let ref u = a.length - 1 in
while l ≤ u do
  let m = (l + u) / 2 in
  ...
```

$l + u$ may overflow with large arrays!

Goal
prove that a program is safe with respect to overflows
32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31} - 1$.

If the mathematical result of an operation fits in that range, that is the computed result.

Otherwise, an overflow occurs. Behavior depends on language and environment: modulo arith, saturated arith, abrupt termination, etc.

A program is safe if no overflow occurs.
Idea: replace all arithmetic operations by abstract functions with preconditions. \(x + y \) becomes \texttt{int32_add}(x, y).

\begin{verbatim}
val int32_add(x: int, y: int): int
 requires -2^{31} \leq x + y < 2^{31}
 ensures result = x + y
\end{verbatim}

Unsatisfactory: range contraints of integer must be added explicitly everywhere
Safety Checking, Second Attempt

Idea:
- replace type `int` with an abstract type `int32`
- introduce a projection from `int32` to `int`
- axiom about the range of projections of `int32` elements
- replace all operations by abstract functions with preconditions

```plaintext
type int32
function to_int(x: int32): int
axiom bounded_int32:
    forall x: int32. -2^31 ≤ to_int(x) < 2^31

val int32_add(x: int32, y: int32): int32
    requires -2^31 ≤ to_int(x) + to_int(y) < 2^31
    ensures to_int(result) = to_int(x) + to_int(y)
```
Binary Search with overflow checking

See `bin_search_int32.mlw`
Binary Search with overflow checking

See `bin_search_int32.mlw`

Application

Used for translating mainstream programming language into Why3:

- From C to Why3: Frama-C, Jessie plug-in
 See `bin_search.c`
- From Java to Why3: Krakatoa
- From Ada to Why3: Spark2014
Floating-Point Arithmetic

- Limited range \Rightarrow exceptional behaviors.
- Limited precision \Rightarrow inaccurate results.
Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: \(1 + w_e + w_m = 32\), or 64, or 128.
Bias: \(2^{w_e-1} - 1\). Precision: \(p = w_m + 1\).

A floating-point datum

<table>
<thead>
<tr>
<th>sign (s)</th>
<th>biased exponent (e') ((w_e) bits)</th>
<th>mantissa (m) ((w_m) bits)</th>
</tr>
</thead>
</table>

represents
Floating-Point Data

IEEE-754 Binary Floating-Point Arithmetic.
Width: $1 + w_e + w_m = 32$, or 64, or 128.
Bias: $2^{w_e-1} - 1$. Precision: $p = w_m + 1$.

A floating-point datum

<table>
<thead>
<tr>
<th>sign s</th>
<th>biased exponent e' (w_e bits)</th>
<th>mantissa m (w_m bits)</th>
</tr>
</thead>
</table>

represents

- if $0 < e' < 2^{w_e} - 1$, the real $(−1)^s \cdot 1.m' \cdot 2^{e'−bias}$, normal
- if $e' = 0$,
 - $±0$ if $m' = 0$, zeros
 - the real $(−1)^s \cdot 0.m' \cdot 2^{−bias+1}$ otherwise, subnormal
- if $e' = 2^{w_e} − 1$,
 - $(−1)^s \cdot \infty$ if $m' = 0$, infinity
 - *Not-a-Number* otherwise.

NaN
Floating-Point Data

\[
\begin{align*}
1 & \quad 11000110 & \quad 100100111100001110000000 \\
 s & \quad e & \quad f \\
 \downarrow & \quad \downarrow & \quad \downarrow \\
 (-1)^s & \times & 2^{e-B} & \times & 1.f \\
 (-1)^1 & \times & 2^{198-127} & \times & 1.10010011110001110000000_2 \\
 & & & & -2^{54} \times 206727 \approx -3.7 \times 10^{21}
\end{align*}
\]
IEEE-754 standard

A floating-point operator shall behave as if it was first computing the infinitely-precise value and then rounding it so that it fits in the destination floating-point format.

Rounding of a real number x:

Overflows are not considered when defining rounding: exponents are supposed to have no upper bound!
Specifications, main ideas

Same as with integers, we specify FP operations so that no overflow occurs.

constant max : real = 0x1.FFFFFEp127
predicate in_float32 (x:real) = abs x \leq max
type float32
function to_real(x: float32): real
axiom float32_range: forall x: float32. in_float32 (to_real x)

function round32(x: real): real
(* ... axioms about round32 ... *)

function float32_add(x: float32, y: float32): float32
 requires in_float32(round32(to_real x + to_real y))
 ensures to_real result = round32 (to_real x + to_real y)
Specifications in practice

- Several possible rounding modes
- Many axioms for \texttt{round32}, but incomplete anyway

Demo: \texttt{clock_drift.c}
Deductive verification nowadays

More native support in SMT solvers:

- **bitvectors** supported by CVC4, Z3, others
- **theory of floats** supported by Z3, CVC4, MathSAT

Using such a support for deductive program verification remains an open research topic

- Issues when bitvectors/floats are mixed with other features: conversions, arrays, quantification

Fumex et al. (2016) C. Fumex, C. Dross, J. Gerlach, C. Marché. Specification and proof of high-level functional properties of bit-level programs. 8th NASA Formal Methods Symposium, LNCS 9690 Science