Reminder of the last lecture

- Ghost variables, ghost functions, lemma functions
- Additional features of the specification language
 - Sum Types, e.g. `lists`
- Programs on `lists`
- Additional feature of the programming language
 - `Exceptions`
 - Function contracts extended with exceptional post-conditions
- Computer Arithmetic: bounded integers, floating-point numbers
- A few home work to do

Home Work: Bézout coefficients

- Extend the post-condition of Euclid’s algorithm for GCD to express the Bézout property:
 \[
 \exists a, b, \text{result} = x \cdot a + y \cdot b
 \]
- Prove the program by adding appropriate ghost local variables
 Use canvas file `exo_bezout.mlw`

Home work: lemmas on exponentiation

- Prove the helper lemmas stated for the fast exponentiation algorithm
 See `power_int_lemma_functions.mlw`
Home Work

Prove Fermat's little theorem for case $p = 3$:

$$\forall x, \exists y.x^3 - x = 3y$$

using a lemma function

See little_fermat_3.mlw

Home Work: Binary Search with an exception

$$low = 0; high = a.length - 1;$$

while $low \leq high$:

let m be the middle of low and $high$

if $a[m] = v$ then return m

if $a[m] < v$ then continue search between m and $high$

if $a[m] > v$ then continue search between low and m

See file bin_search_exc.mlw

Introducing Aliasing Issues

Compound data structures can be *modeled* using expressive specification languages

- Defined functions and predicates
- Product types (records)
- Sum types (lists, trees)
- Axiomatizations (arrays, machine integers)
- Ghost code, lemma functions

Important points:

- *pure* types, no internal “in-place” assignment
- Mutable variables = *references to pure types*

No Aliasing

Aliasing

Aliasing = two different “names” for the same mutable data

Two sub-topics of today’s lecture:

- Call by reference
- Pointer programs
Outline

Call by Reference

The Framing Issue

Pointer Programs

Need for call by reference

Example: stacks of integers

```
type stack = list int
val ref s: stack

let push(x:int):unit
    writes s
    ensures s = Cons(x,s@Old)

body ...

let pop(): int
    requires s <> Nil
    writes s
    ensures result = head(s@Old) \ s = tail(s@Old)
```

Need for call by reference

If we need two stacks in the same program:

▶ We don’t want to write the functions twice!

We want to write

```
type stack = list int

let push(ref s: stack, x:int): unit
    writes s
    ensures s = Cons(x,s@Old)
...

let pop(ref s: stack):int)
...
```

Call by Reference: example

```
val ref s1,s2: stack

let test():
    writes s1, s2
    ensures result = 13 \ head(s2) = 42

body push(s1,13); push(s2,42); pop(s1)

▶ See file stack1.mlw
```
Aliasing problems

let test(ref s3,s4: stack) : unit
writes s3, s4
ensures \{ head(s3) = 13 \land head(s4) = 42 \}
body push(s3,13); push(s4,42)

let wrong(ref s5: stack) : int
writes s5
ensures \{ head(s5) = 13 \land head(s5) = 42 \}

something’s wrong !?

body test(s5,s5)

Aliasing is a major issue
Deductive Verification Methods like Hoare logic, Weakest Precondition Calculus implicitly require absence of aliasing

Syntax

- Declaration of functions: (references first for simplicity)

 let f(ref y_1 : \tau_1, \ldots, ref y_k : \tau_k, x_1 : \tau'_1, \ldots, x_n : \tau'_n):

 \ldots

- Call:

 f(z_1, \ldots, z_k, e_1, \ldots, e_n)

 where each \(z_i \) must be a mutable variable

Operational Semantics

Intuitive semantics, by substitution:

\[
\pi = \{ x_i \mapsto [t_i]_{\Sigma, \pi} \}
\]

\[
\Sigma, \pi \models Pre \quad Body = Body[y_j \leftarrow z_j]
\]

\[
\Sigma, \Pi, f(t_1, \ldots, t_n) \rightsquigarrow \Sigma, (\pi, Post) \cdot \Pi, (Old : Body')
\]

- The body is executed, where each occurrence of reference parameters are replaced by the corresponding reference argument.
- Not a “practical” semantics, but that’s not important . . .

Operational Semantics

Variant: Semantics by copy/restore:

\[
\pi = \{ y_j \mapsto z_j \} \quad \Sigma, \pi \models Pre
\]

\[
\Sigma, \Pi, f(t_1, \ldots, t_n) \rightsquigarrow \Sigma, (\pi, Post) \cdot \Pi, (Old : Body)
\]

\[
\Sigma, \pi \models Post[result \leftarrow v] \quad \Sigma' = \Sigma[z_j \leftarrow \pi(y_j)]
\]

\[
\Sigma, (\pi, Post) \cdot \Pi, v \rightsquigarrow \Sigma', \Pi, v
\]

Warning: not the same semantics !
Difference in the semantics

```ocaml
val ref g : int

let f(ref x: int):unit
  body x <- 1; x <- g+1

let test():unit
  body g <- 0; f(g)
```

After executing test:
- Semantics by substitution: $g = 2$
- Semantics by copy/restore: $g = 1$

Aliasing Issues (1)

```ocaml
let f(ref x: int, ref y: int):
  writes x, y
  ensures x = 1 /\ y = 2
  body x <- 1; y <- 2

val ref g : int

let test():
  body f(g,g);
  assert g = 1 /\ g = 2 (* what’s wrong? *)
```

- Aliasing of reference parameters

Aliasing Issues (2)

```ocaml
val ref g1 : int
val ref g2 : int

let p(ref x: int):
  writes g1, x
  ensures g1 = 1 /\ x = 2
  body g1 <- 1; x <- 2

let test():
  body
  p(g2); assert g1 = 1 /\ g2 = 2; (* OK *)
  p(g1); assert g1 = 1 /\ g1 = 2; (* what’s wrong? *)
```

- Aliasing of a global variable and reference parameter

Aliasing Issues (3)

```ocaml
val ref g : int

val fun f(ref x: int):unit
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)

let test():unit
  ensures { g = 1 or 2 ? }
  body g <- 0; f(g)
```

- Aliasing of a read reference and a written reference
New need in specifications
Need to specify read references in contracts

```
val ref g : int
val f(ref x: int):unit
  reads g       (* new clause in contract *)
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)

let test():unit
  ensures { g = ? }
  body g <- 0; f(g)
```

See file stack2.mlw

Typing: Alias-Freedom Conditions

For a function of the form

```
f(ref y_1 : \tau_1,..., ref y_k : \tau_k,...) : \tau:
  writes \vec{w}
  reads \vec{r}
```

Typing rule for a call to \(f \):

\[
\begin{align*}
\forall i,j, i \neq j \rightarrow z_i \neq z_j & \quad \forall i,j, z_i \neq w_j & \quad \forall i,j, z_i \neq r_j \\
\vdash f(z_1, ..., z_k, ...) : \tau
\end{align*}
\]

- effective arguments \(z_j \) must be distinct
- effective arguments \(z_j \) must not be already directly read nor written by \(f \)

Proof Rules

Thanks to restricted typing:
- Semantics by substitution and by copy/restore coincide
- Hoare rules remain correct
- WP rules remain correct

New references

- Need to return newly created references
- Example: stack continued

```
let create():ref stack
  ensures result = Nil
  body (ref Nil)
```

- Typing should require that a returned reference is always fresh

More on aliasing control using static typing: [Filliâtre, 2016]
Function **eval**

Formally interprets an array of reals as a polynomial function

```ml
let rec function eval_aux (p:array real) (x:real)
    (i j:int) : real
= if j <= i then 0.0 else
  p[i] + x * eval_aux p x (i+1) j

function eval (p:array real) (x:real) : real =
  eval_aux p x 0 p.length
```

Example:

```
eval P0 0.5
= eval_aux [-7; 4; 0; 1] 0.5 0 4
= (-7) + 0.5 * eval_aux [-7; 4; 0; 1] 0.5 1 4
= : =
= (-7) + 0.5 * (4 + 0.5 * (0 + 0.5 * 1))
```

Introduction to Framing

Example from exam 2017

- Consider polynomials of the form $\sum_{i=0}^{n} c_i X^i$
- Representation: array of real numbers, len $n + 1$, i-th cell is c_i

Example: $P_0 = X^3 + 4X - 7$ is represented as array $[-7; 4; 0; 1]$

Adding a constant to a polynomial

Function add_const

Adds a constant to a polynomial

```ml
let add_const (p:array real) (c:real) : unit
requires { p.length >= 1 }
writes { p }
ensures { forall x. eval p x = eval (old p) x + c }
= p[0] <- p[0] + c
```

As such, this function is not proved automatically, why?
Need for a framing property

Let \(p' \) denote the array after assignment. Proving the post-condition requires to establish:

\[
\text{eval } p' x = \text{eval } p x + c
\]

that is, after unfolding \text{eval}:

\[
\text{eval aux } p' x 0 l = \text{eval aux } p x 0 l + c
\]

By expanding using the definition of \text{eval aux}:

\[
p'[0] + \text{eval aux } p' x 1 l = p[0] + \text{eval aux } p x 1 l + c
\]

After simplification:

\[
\text{eval aux } p' x 1 l = \text{eval aux } p x 1 l
\]

Framing

To prove that \(p' \) is equal to \(p \) on the range 1 \(\ldots \) \(l \), a frame property is needed.

Frame property

For any arrays \(p \) and \(q \), if

\[
\forall k, i \leq k < j \rightarrow p[k] = q[k]
\]

then

\[
\text{eval aux } p x i j = \text{eval aux } q x i j
\]

A lemma function can be stated as follows to enforce a proof by induction on \(j - i \):

\[
\text{let rec lemma eval aux frame } (p q:\text{array real}) (x:real) (i j:\text{int}) \\text{requires} \{ \forall k. i \leq k < j \rightarrow p[k] = q[k] \} \\text{variant} \{ j - i \} \\text{ensures} \{ \text{eval aux } p x i j = \text{eval aux } q x i j \} = \text{if } j > i \text{ then eval frame } p q x (i+1) j
\]

Property needed very often, e.g. for addition of polynomials.

Frame properties in general

For a predicate \(P \), the frame of \(P \) is the set of memory locations \(fr(P) \) that \(P \) depends on.

Frame property

\(P \) is invariant under mutations outside \(fr(P) \)

\[
H \vdash P \quad H \cap fr(P) = H' \cap fr(P) \quad \Rightarrow \quad H' \vdash P
\]

See also [Kassios, 2006]
Pointer programs

- We drop the hypothesis “no reference to reference”
- Allows to program on *linked data structures*. Example (in the C language):

  ```c
  struct List { int data; linked_list next; }
  +linked_list;
  while (p <> NULL) { p->data++; p = p->next }
  ```

- “In-place” assignment
- References are now *values* of the language: “pointers” or “memory addresses”

We need to handle aliasing problems differently

Syntax

- For simplicity, we assume a language with pointers to records
- Access to record field: `e.f`
- Update of a record field: `e.f <- e'`

Operational Semantics

- New kind of values: `loc` = the type of pointers
- A special value `null` of type `loc` is given
- A program state is now a pair of
 - a `store` which maps variables identifiers to values
 - a `heap` which maps pairs `(loc, field name)` to values
- Memory access and updates should be proved safe (no “null pointer dereferencing”)
- For the moment we forbid allocation/deallocation

 See lecture next week

Component-as-array trick

Bornat, 2000

If

- a program is *well-typed*
- The set of all field names are known

then the heap can be also seen as a *finite collection of maps*, one for each field name:

- map for a field of type `τ` maps loc to values of type `τ`

This “trick” allows to *encode pointer programs* into our previous programming language:

- Use maps indexed by locs (instead of integers for arrays)
Component-as-array model

<table>
<thead>
<tr>
<th>type</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>null : loc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>val</th>
<th>acc(ref field: loc -> 'a, l:loc) : 'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>requires</td>
<td>l <> null</td>
</tr>
<tr>
<td>reads</td>
<td>field</td>
</tr>
<tr>
<td>ensures</td>
<td>result = select(field,l)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>val</th>
<th>upd(ref field: loc -> 'a, l:loc, v:'a):unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>requires</td>
<td>l <> null</td>
</tr>
<tr>
<td>writes</td>
<td>field</td>
</tr>
<tr>
<td>ensures</td>
<td>field = store(field@Old,l,v)</td>
</tr>
</tbody>
</table>

Encoding:
- Access to record field: `e.f` becomes `acc(f,e)`
- Update of a record field: `e.f <- e'` becomes `upd(f,e,e')`

Example

- In C
  ```c
  struct List { int data; linked_list next; }
  *linked_list;
  
  while (p <> NULL) { p->data++; p = p->next }
  ```

- Encoded as
  ```ocaml
  val ref data: loc -> int
  val ref next: loc -> loc
  val ref p : loc
  
  while p <> null do
    upd(data,p,acc(data,p)+1);
    p <- acc(next,p)
  ```

In-place List Reversal

A la C/Java:

```ocaml
linked_list reverse(linked_list l) {
  linked_list p = l;
  linked_list r = null;
  while (p != null) {
    linked_list n = p->next;
    p->next = r;
    r = p;
    p = n
  }
  return r;
}
```

In-place List Reversal

- initial step:
- intermediate step:
- final state:
In-place Reversal in our Model

```ocaml
let reverse (l:loc) : loc =
let ref p = l in
let ref r = null in
while p <> null do
  let n = acc(next,p) in
  upd(next,p,r);
  r <- p;
  p <- n
done;
  r
```

Goals:
- Specify the expected behavior of `reverse`
- Prove the implementation

Specifying reverse

Three possibilities for a shape of a linked list:
- null terminated, e.g.:
  ```
  12 -> 99 -> 37 -> 42 -> 6 -> null
  ```
- cyclic, e.g.:
  ```
  12 -> 99 -> 37 -> 42 -> 6 -> 12
  ```
- or... infinite! (not forbidden in our model)

Specifying the function

Predicate `list_seg(p, next, pM, q) :`
- `p` points to a list of nodes `pM` that ends at `q`
  ```
  p = p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_k \rightarrow q
  p_M = Cons(p_0, Cons(p_1, \cdots Cons(p_k, Nil)\cdots))
  ```
- `pM` is the model list of `p`

```ocaml
predicate list_seg (p:loc, next: loc -> loc, pM:list loc, q:loc) =
match pM with
  | Nil -> p = q
  | Cons h t ->
    p <> null \/
    h=p \/
    list_seg(next p),next,t,q)
```

Specification

- pre: input `l` well-formed:
  ```
  \exists l_M.list_seg(l, next, l_M, null)
  ```
- post: output well-formed:
  ```
  \exists r_M.list_seg(result, next, r_M, null)
  and
  r_M = rev(l_M)
  ```

Issue: quantification on `l_M` is global to the function
- Use `ghost` variables
Annotated In-place Reversal

```ocaml
let reverse (l:loc) (ghost lM:list loc) : loc =  
  requires list_seg(l,next,lM,null)  
  writes next  
  ensures list_seg(result,next,rev(lM),null)  
body  
  let ref p = l in  
  let ref r = null in  
  while p <> null do  
    let n = acc(next,p) in  
    upd(next,p,r);  
    r <- p;  
    p <- n  
  done;  
r
```

See file `linked_list_rev.mlw`

In-place Reversal: loop invariant

```ocaml
while (p <> null) do  
  let n = acc(next,p) in  
  upd(next,p,r);  
  r <- p;  
  p <- n
```

Local ghost variables p_M, r_M

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

To prove invariant $\text{list_seg}(p, next, p_M, null)$, we need to show that list_seg remains true when `next` is updated:

```ocaml
lemma list_seg_frame: forall next1 next2:map loc loc, p q r v: loc, pM:list loc.  
  list_seg(p,next1,pM,q) /
  next2 = store(next1,r,v) /
  not mem(r,pM) -> list_seg(p,next2,pM,q)
```

This is again an instance of the general frame property

Needed lemmas

- To prove invariant $\text{list_seg}(p, next, p_M, null)$, we need to show that list_seg remains true when `next` is updated:

- But to apply the frame lemma, we need to show that a path going to `null` cannot contain repeated elements

```ocaml
lemma list_seg_no_repet:  
  forall next:map loc loc, p: loc, pM:list loc.  
  list_seg(p,next,pM,null) -> no_repet(pM)
```
Needed lemmas

- To prove invariant \(\text{list}_\text{seg}(r, \text{next}, r_M, \text{null}) \), we need the frame property.
- Again, to apply the frame lemma, we need to show that \(p_M, r_M \) remain disjoint. It is an additional invariant.

Exercise

The algorithm that appends two lists \emph{in place} follows this pseudo-code:

\begin{verbatim}
append(l1, l2 : loc) : loc
 if l1 is empty then return l2;
 let ref p = l1 in
 while p.next is not null do p <- p.next;
 p.next <- l2;
 return l1
\end{verbatim}

1. Specify a post-condition giving the list models of both \(\text{result} \) and \(l_2 \) (add any ghost variable needed).
2. Which pre-conditions and loop invariants are needed to prove this function?

See linked_list_app.mlw

Bibliography

Aliasing control using static typing

Component-as-array modeling

Advertising next lectures

- Reasoning on pointer programs using the component-as-array trick is complex
 - need to state and prove \emph{frame} lemmas
 - need to specify many disjointness properties
 - even harder is the handling of \emph{memory allocation}
- \emph{Separation Logic} is another approach to reason on heap memory
 - memory resources \emph{explicit} in formulas
 - frame lemmas and disjointness properties are internalized