Aliasing Issues:
Call by reference, Pointer programs

Claude Marché
Cours MPRI 2-36-1 “Preuve de Programme”
January 17th, 2023

Reminder of the last lecture

- Ghost variables, ghost functions, lemma functions
- Additional features of the specification language
 - Sum Types, e.g. lists
- Programs on lists
- Additional feature of the programming language
 - Exceptions
 - Function contracts extended with exceptional post-conditions
- Computer Arithmetic: bounded integers, floating-point numbers
- A few home work to do

Home Work: Bézout coefficients

- Extend the post-condition of Euclid’s algorithm for GCD to express the Bézout property:
 \[\exists a, b, \text{result} = x \cdot a + y \cdot b \]

- Prove the program by adding appropriate ghost local variables

Use canvas file exo_bezout.mlw

Home work: lemmas on exponentiation

- Prove the helper lemmas stated for the fast exponentiation algorithm

See power_int.lemma_functions.mlw
Prove Fermat's little theorem for case $p = 3$:

$$\forall x, \exists y. x^3 - x = 3y$$

using a lemma function

See `little_fermat_3.mlw`

Home Work: Binary Search with an exception

```plaintext
low = 0; high = a.length - 1;
while low \leq high:
    let m be the middle of low and high
    if a[m] = v then return m
    if a[m] < v then continue search between m and high
    if a[m] > v then continue search between low and m
```

See file `bin_search_exc.mlw`

Binary Search with overflow checking

See `bin_search_int32.mlw`

Introducing Aliasing Issues

Compound data structures can be *modeled* using expressive specification languages

- Defined functions and predicates
- Product types (records)
- Sum types (lists, trees)
- Axiomatizations (arrays, machine integers)
- Ghost code, lemma functions

Important points:

- *pure* types, no internal “in-place” assignment
- Mutable variables = *references to pure types*

No Aliasing
Aliasing

Aliasing = two different “names” for the same mutable data

Two sub-topics of today’s lecture:
► Call by reference
► Pointer programs

Need for call by reference

Example: stacks of integers

type stack = list int
val ref s: stack

let push(x:int):unit
 writes s
 ensures s = Cons(x,s@Old)
 body ...

let pop(): int
 requires s <> Nil
 writes s
 ensures result = head(s@Old) \ s = tail(s@Old)

Need for call by reference

If we need two stacks in the same program:
► We don’t want to write the functions twice!
We want to write

type stack = list int
let push(ref s: stack, x:int): unit
 writes s
 ensures s = Cons(x,s@Old)
 ...
let pop(ref s: stack):int)
 ...

Call by Reference: example

```ocaml
val ref s1, s2 : stack

let test () : unit
  writes s1, s2
  ensures result = 13 \ head(s2) = 42
  body push(s1,13); push(s2,42); pop(s1)
```

▶ See file `stack1.mlw`

Aliasing problems

```ocaml
let test (ref s3, s4 : stack) : unit
  writes s3, s4
  ensures \{ head(s3) = 13 /\ head(s4) = 42 \}
  body push(s3,13); push(s4,42)

let wrong (ref s5 : stack) : int
  writes s5
  ensures \{ head(s5) = 13 /\ head(s5) = 42 \}
  something's wrong !?
  body test(s5,s5)
```

Aliasing is a major issue

Deductive Verification Methods like Hoare Logic, Weakest Precondition Calculus implicitly require absence of aliasing

Syntax

▶ Declaration of functions: (references first for simplicity)

```ocaml
let f(ref y_1 : \tau_1, ..., ref y_k : \tau_k, x_1 : \tau'_1, ..., x_n : \tau'_n) :
  ...
```

▶ Call:

```ocaml
f(z_1, ..., z_k, e_1, ..., e_n)
```

where each \(z_i\) must be a (mutable) variable

Operational Semantics

Intuitive semantics, by substitution:

\[
\begin{align*}
\pi &= \{ x_i \mapsto \llbracket t_i \rrbracket_{\Sigma,\pi} \} \\
\Sigma, \pi &\models Pre \quad \text{Body} = \text{Body}[y_j \leftarrow z_j] \\
\Sigma, \Pi, f(t_1, \ldots, t_n) \leadsto \Sigma_{\pi} (\pi, Post) \cdot \Pi \cdot (\text{Old} : \text{Body}')
\end{align*}
\]

▶ The body is executed, where each occurrence of reference parameters are replaced by the corresponding reference argument.

▶ Not a “practical” semantics, but that’s not important...
Operational Semantics

Variant: Semantics by copy/restore:

\[
\begin{align*}
\pi & = \{ y_j \mapsto \Sigma(z_j), x_i \mapsto [t_i]_{\Sigma, \pi} \} \quad \Sigma, \pi \models \text{Pre} \\
\Sigma, \Pi, f(t_1, \ldots, t_n) & \rightarrow \Sigma, (\pi, \text{Post}) \cdot \Pi, (\text{Old} : \text{Body}) \\
\Sigma, \pi \models \text{Post}[\text{result} \leftarrow v] & \quad \Sigma' = \Sigma[z_j \leftarrow \pi(y_j)] \\
\Sigma, (\pi, \text{Post}) \cdot \Pi, v & \rightarrow \Sigma', \Pi, v
\end{align*}
\]

Warning: not the same semantics!

Difference in the semantics

```ml
val ref g : int

let f(ref x: int):unit
  body x <- 1; x <- g+1

let test():unit
  body g <- 0; f(g)
```

After executing `test`:
- Semantics by substitution: `g = 2`
- Semantics by copy/restore: `g = 1`

Aliasing Issues (1)

```ml
let f(ref x: int, ref y: int):
  writes x, y
  ensures x = 1 \lor y = 2
  body x <- 1; y <- 2

val ref g : int
let test():
  body f(g,g);
  assert g = 1 \lor g = 2 (* ?? *)
```

- Aliasing of reference parameters

Aliasing Issues (2)

```ml
val ref g1 : int
val ref g2 : int

let p(ref x: int):
  writes g1, x
  ensures g1 = 1 \lor x = 2
  body g1 <- 1; x <- 2

let test():
  body
  p(g2); assert g1 = 1 \lor g2 = 2; (* OK *)
  p(g1); assert g1 = 1 \lor g1 = 2; (* ?? *)
```

- Aliasing of a global variable and reference parameter
Aliasing Issues (3)

```
val ref g : int
val fun f(ref x: int):unit
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)
let test():unit
  ensures { g = 1 or 2 ? }
  body g <- 0; f(g)
```

▶ Aliasing of a read reference and a written reference

New need in specifications

Need to specify read references in contracts

```
val ref g : int
val f(ref x: int):unit
  reads g       (* new clause in contract *)
  writes x
  ensures x = g + 1
  (* body x <- 1; x <- g+1 *)
let test():unit
  ensures { g = ? }
  body g <- 0; f(g)
```

▶ See file stack2.mlw

Typing: Alias-Freedom Conditions

For a function of the form

\[f(y_1 : \tau_1, ..., y_k : \tau_k, ...) : \tau : \]

writes \(\vec{w} \)

reads \(\vec{r} \)

Typing rule for a call to \(f \):

\[
\begin{align*}
\text{...} & \quad \forall j, i \neq j \rightarrow z_i \neq z_j \quad \forall i, j, z_i \neq w_j \quad \forall i, j, z_i \neq r_j \\
\text{...} & \quad \vdash f(z_1, ..., z_k, ...) : \tau
\end{align*}
\]

▶ effective arguments \(z_j \) must be distinct
▶ effective arguments \(z_j \) must not be read nor written by \(f \)

Proof Rules

Thanks to restricted typing:

▶ Semantics by substitution and by copy/restore coincide
▶ Hoare rules remain correct
▶ WP rules remain correct
New references

- Need to return newly created references
- Example: stack continued

```ocaml
let create():ref stack
  ensures result = Nil
body (ref Nil)
```

- Typing should require that a returned reference is always fresh

More on aliasing control using static typing: [Filliâtre, 2016]

Outline

- Call by Reference
- The Framing Issue
- Pointer Programs

Introduction to Framing

(Example from exam 2017)

- Consider polynomials of the form \(\sum_{i=0}^{n} c_i X^i \)
- Representation: array of real numbers, len \(n + 1 \), \(i \)-th cell is \(c_i \)

Example: \(P_0 = X^3 + 4X - 7 \) is represented as array \([-7; 4; 0; 1]\)

Polynomial Evaluation

Function eval

Formally interprets an array of reals as a polynomial function

```ocaml
let rec function eval_aux (p:array real) (x:real)
  (i j:int) : real
= if j <= i then 0.0
  else p[i] + x * eval_aux p x (i+1) j

function eval (p:array real) (x:real) : real =
  eval_aux p x 0 p.length
```

Example

```ocaml
let eval_aux [-7; 4; 0; 1] 0.5 4
(= (-7) + 0.5 * eval_aux [-7; 4; 0; 1] 0.5 1)
= (-7) + 0.5 * (-4 + 0.5 * (0 + 0.5 * 1))
```
Adding a constant to a polynomial

Function add_const
Adds a constant to a polynomial

```plaintext
let add_const (p:array real) (c:real) : unit
  requires { p.length >= 1 }
  writes { p }
  ensures { forall x. eval p x = eval (old p) x + c }
= p[0] <- p[0] + c
```

As such, this function is not proved automatically, why?

Need for a framing property
Let \(p' \) denote the array after assignment. Proving the post-condition requires to establish:

\[
\text{eval } p' \ x = \text{eval } p \ x + c
\]
that is, after unfolding eval:

\[
\text{eval}_\text{aux} \ p' \ 0 \ l = \text{eval}_\text{aux} \ p \ 0 \ l + c
\]
By expanding using the definition of \(\text{eval}_\text{aux} \):

\[
p'[0] + \text{eval}_\text{aux} \ p' \times 1 \ l = p[0] + \text{eval}_\text{aux} \ p \times 1 \ l + c
\]
After simplification:

\[
\text{eval}_\text{aux} \ p' \times 1 \ l = \text{eval}_\text{aux} \ p \times 1 \ l
\]

Frame property

To prove that \(p' \) is equal to \(p \) on the range \(1 \ldots l \), a frame property is needed.

Frame properties in general

For a predicate \(P \), the frame \(P \) is the set of memory locations \(fr(P) \) that \(P \) depends on.

Frame property
\(P \) is invariant under mutations outside \(fr(P) \)

\[
\begin{align*}
\text{H} \vdash P \\
\text{H} \cap fr(P) & = \text{H}' \cap fr(P) \\
\text{H}' & \vdash P
\end{align*}
\]
See also [Kassios, 2006]
Outline

Call by Reference

The Framing Issue

Pointer Programs

Pointer programs

▶ We drop the hypothesis “no reference to reference”
▶ Allows to program on linked data structures. Example (in the C language):

```c
struct List { int data; linked_list next; }
*linked_list;
while (p <> NULL) { p->data++; p = p->next }
```

▶ “In-place” assignment
▶ References are now values of the language: “pointers” or “memory addresses”

We need to handle aliasing problems differently

Syntax

▶ For simplicity, we assume a language with pointers to records
▶ Access to record field: e.f
▶ Update of a record field: e.f <- e’

Operational Semantics

▶ New kind of values: loc = the type of pointers
▶ A special value null of type loc is given
▶ A program state is now a pair of
 ▶ a store which maps variables identifiers to values
 ▶ a heap which maps pairs (loc, field name) to values
▶ Memory access and updates should be proved safe (no “null pointer dereferencing”)
▶ For the moment we forbid allocation/deallocation
 [See lecture next week]
Component-as-array trick

[Bornat, 2000]

If
 ▶ a program is well-typed
 ▶ The set of all field names are known
then the heap can be also seen as a finite collection of maps, one for each field name:
 ▶ map for a field of type τ maps loc to values of type τ

This “trick” allows to encode pointer programs into our previous programming language:
 ▶ Use maps indexed by locs (instead of integers for arrays)

Example

▶ In C

```c
struct List { int data; linked_list next; }
  +linked_list;

while (p <> NULL) { p->data++; p = p->next }
```

▶ Encoded as

```ocaml
val ref data: loc -> int
val ref next: loc -> loc
val ref p : loc

while p <> null do
  upd(data,p,acc(data,p)+1);
  p <- acc(next,p)
```

Component-as-array model

```
type loc
constant null : loc

val acc (ref field: loc -> 'a, l:loc) : 'a
  requires l <> null
  reads field
  ensures result = select(field,l)

val upd (ref field: loc -> 'a, l:loc, v:'a):unit
  requires l <> null
  writes field
  ensures field = store(field@old,l,v)
```

Encoding:
 ▶ Access to record field: $e.f$ becomes $acc(f,e)$
 ▶ Update of a record field: $e.f <- e'$ becomes $upd(f,e,e')$

In-place List Reversal

A la C/Java:

```
linked_list reverse(linked_list l) {
  linked_list p = l;
  linked_list r = null;
  while (p != null) {
    linked_list n = p->next;
    p->next = r;
    r = p;
    p = n
  }
  return r;
}
```
In-place List Reversal

initial step:

intermediate step:

final state:

In-place Reversal in our Model

```ocaml
let reverse (l:loc) : loc =
  let ref p = l in
  let ref r = null in
  while p <> null do
    let n = acc(next,p) in
    upd(next,p,r);
    r <- p;
    p <- n
  done;
  r
```

Goals:
- Specify the expected behavior of `reverse`
- Prove the implementation

Specifying `reverse`

Three possibilities for a shape of a linked list:
- null terminated, e.g.:
  ```
  12 • —• —• —• —• —• —• —• —• null
  ```
- cyclic, e.g.:
  ```
  12 • —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• —• null
  ```
- or... infinite! (not forbidden in our model)

Specifying the function

Predicate `list_seg(p, next, p_M, q)`:

- `p` points to a list of nodes `p_M` that ends at `q`
  ```
  p = p_0 \rightarrow^\cdot \rightarrow^\cdot \rightarrow^\cdot p_k \rightarrow^\cdot \rightarrow^\cdot q
  ```
  ```
  p_M = \text{Cons}(p_0, \text{Cons}(p_1, \ldots, \text{Cons}(p_k, \text{Nil}) \ldots))
  ```

 `p_M` is the model list of `p`

```ocaml
predicate list_seg (p:loc, next: loc -> loc,
                  pM:list loc, q:loc) =
match pM with
| Nil -> p = q
| Cons h t ->
  p <> null \&\& h=p \&\& list_seg((next p),next,t,q)
```
Speciation

- pre: input l well-formed:
 $\exists l_M. \text{list}_\text{seg}(l, next, l_M, null)$
- post: output well-formed:
 $\exists r_M. \text{list}_\text{seg}(result, next, r_M, null)$
 and
 $r_M = \text{rev}(l_M)$

Issue: quantification on l_M is global to the function
- Use ghost variables

Annotated In-place Reversal

```
let reverse (l:loc) (ghost lM:list loc) : loc =
  requires list_seg(l,next,lM,null)
  writes next
  ensures list_seg(result,next,rev(lM),null)
body
  let ref p = l in
  let ref r = null in
  while p <> null do
    let n = acc(next,p) in
    upd(next,p,r);
    r <- p;
    p <- n
  done;
  r
```
See file linked_list_rev.mlw

In-place Reversal: loop invariant

```
while (p <> null) do
  let n = acc(next,p) in
  upd(next,p,r);
  r <- p;
  p <- n
```

Local ghost variables p_M, r_M

- $\text{list}_\text{seg}(p, next, p_M, null)$
- $\text{list}_\text{seg}(r, next, r_M, null)$
- $\text{append}(\text{rev}(p_M), r_M) = \text{rev}(l_M)$

Needed lemmas

To prove invariant $\text{list}_\text{seg}(p, next, p_M, null)$, we need to show that list_seg remains true when $next$ is updated:

```
lemma list_seg_frame: forall next1 next2:map loc loc,
  p q r v: loc, pM: list loc.
  list_seg(p,next1,pM,q) /\
  next2 = store(next1,r,v) /\
  not mem(r,pM) -> list_seg(p,next2,pM,q)
```

This is again an instance of the general frame property
Needed lemmas

To prove invariant $\text{list}_\text{seg}(p, next, p_M, \text{null})$, we need to show that list_seg remains true when next is updated:

But to apply the frame lemma, we need to show that a path going to null cannot contain repeated elements.

```ml
lemma list\_seg\_no\_repet:
  forall next:map loc loc, p: loc, pM:list loc.
  list\_seg(p,next,pM,\text{null}) \rightarrow \text{no\_repet}(pM)
```

Exercise

The algorithm that appends two lists in place follows this pseudo-code:

```ml
append(l1,l2 : loc) : loc
  if l1 is empty then return l2;
  let ref p = l1 in
  while p.next is not null do p <- p.next;
  p.next <- l2;
  return l1
```

1. Specify a post-condition giving the list models of both result and $l2$ (add any ghost variable needed)
2. Which pre-conditions and loop invariants are needed to prove this function?

Bibliography

Aliasing control using static typing

Component-as-array modeling

Reasoning on pointer programs using the component-as-array trick is complex
 ▶ need to state and prove frame lemmas
 ▶ need to specify many disjointness properties
 ▶ even harder is the handling of memory allocation
▷ Separation Logic is another approach to reason on heap memory
 ▶ memory resources explicit in formulas
 ▶ frame lemmas and disjointness properties are internalized