
MPRI - Lecture 2-36-1 “Proof of Program” Project 2023-2024

Two-Player Games, Alpha-Beta and Dynamic
Programming

The goal of this project is to formalize two-player games and algorithms for finding best moves, such as
the classical alpha-beta algorithm1, and to instantiate the formalization on a particular variant of the game
of Nim, called the game of “Min”.

This project is to be carried out using the Why3 tool (version 1.7.x), in combination with automated
provers (Alt-Ergo 2.5.x, CVC4 1.8, CVC5 1.0.x and Z3 4.12.x or higher). You can use other automatic
provers or versions if you want, if they are freely available and recognized by Why3. You may use Coq for
discharging particular proof obligations, although the project can be completed without it. The installation
procedure may be found on the web page of the course at URL https://marche.gitlabpages.inria.fr/

lecture-deductive-verif/install.html.
The project must be done individually: team work is not allowed. In order to obtain a grade for the

project, you must send an e-mail to Claude.Marche@inria.fr and Jean-Marie.Madiot@inria.fr, no later
than Thursday, February 8th, 2024 at 23:00 UTC+1. This e-mail should be entitled “MPRI project 2-
36-1”, be signed with your name, and have as attachment an archive (zip or tar.gz) storing the following
items:

• The proposed canvas file min_game.mlw completed by yours.

• The content of the sub-directory min_game generated by Why3. In particular, this directory should
contain session files why3session.xml and why3shapes.gz, and Coq proof scripts, if any.

• A PDF document named report.pdf in which you report on your work. The contents of this report
counts for at least half of your grade for the project.

The report must be written in French or English, and should typically consist of 3 to 6 pages. The
structure should follow the sections and the questions of the present document. For each question, detail
your approach, focusing in particular on the design choices that you made regarding the implementations
and specifications. In particular, loop invariants and assertions that you added should be explained in your
report: what they mean and how they help to complete the proof.

A typical answer to a question or step would be: “For this function, I propose the following implemen-
tation: [give pseudo-code]. The contract of this function is [give a copy-paste of the contract]. It captures
the fact that [rephrase the contract in natural language]. To prove this code correct, I need to add extra an-
notations [give the loop invariants, etc.] capturing that [rephrase the annotations in english]. This invariant
is initially true because [explain]. It is preserved at each iteration because [explain]. The post-condition
then follows because [explain].”

The reader of your report should be convinced at each step that the contracts are the right ones, and
should be able to understand why your program is correct, e.g., why a loop invariant is initially true, why it
is preserved, and why it suffices to establish the post-condition. It is legitimate to copy-paste parts of your
Why3 code in the report, yet you should only copy the most relevant parts, not all of your code. In case you
are not able to fully complete a definition or a proof, you should carefully describe which parts are missing
and explain the problems that you faced.

In addition, your report should contain a conclusion, providing general feedback about your work: how
easy or how hard it was, what were the major difficulties, was there any unexpected result, and any other
information that you think is important to consider for the evaluation of the work you did.

1http://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
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1 Two-player games

A two-player game is any kind of game, like say chess, were each of the two players, called here Alice and
Bob, play in turn a move that changes the current game configuration. They start from a given initial con-
figuration and Alice plays first by convention. The game continues until it reaches some final configuration,
where some rule tells which player wins.

1.1 A Variant of Nim Games: the “Min” Game

Nim games2 are a family of two-player games. A classical version runs as follows: given a set of identical
objects (say, 21 matches), each player can in turn pick either one, two or three objects; the player who
manages to pick the last object wins. In this project, we consider a variant of the above we call the “Min”
game. This game is played with a sequence of numbers. At her/his turn, a player may take either the first
number or the first two numbers from the head of the sequence. The game ends as soon as there is zero
or one number left in the sequence. At this point, the player whose numbers picked have the smallest sum
wins the game.

For example, consider the following sequence of numbers.

20, 17, 24,−30, 27

If Alice takes the first two numbers (20 and 17), and Bob then takes the next two (24 and −30), then the
game ends with Bob winning −6 against 37. In this case, we say that the final score is 43 (i.e. (37− (−6)).
The score is by definition the difference between Alice’s numbers and Bob’s numbers, so that Alice wants
to minimize the score whereas Bob wants to maximize it. As another example of run of this game, assume
Alice takes only the first number (20). Then, whatever the next move of Bob, Alice is able to pick up the
number −30 and therefore Alice ultimately wins the game, either with final score −51 (i.e. (20 − 30) −
(17 + 24)) or −3 (i.e. (20 + 24− 30)− 17). In other words, the best strategy for Alice is to pick only the
first number for her first move.

1.2 General Description of Two-Player Games

We start by giving a general interface for two-player games, although, for the sake of simplicity, we will
assume that there are always exactly two possible moves from every non-final configuration. The module
MinGame of the file min_game.mlw provides definitions that implement this interface for the game of Min.

• The type player represents players: either Alice or Bob.

• The type config represents a configuration of the game. In particular, for a configuration c, the field
c.turn indicates which is the next player to play.

1. The predicate inv is an invariant that constraints the set of well-formed configurations. Fill-in its
definition (your answer to this question might be definitive only after solving the other questions).

1.3 Specification and Verification of Move-Related Functions

The type move is used to represent the possible moves that a player can make on a given configuration.
The function legal_moves (defined both in logic and as a program using let function) is supposed to

return the set of possible moves in a given configuration. There are 0 or 2 of them. A final configuration of
a game is by definition a configuration where there are no more moves.

2. Fill-in the definition of legal_moves

The function do_move, given a configuration c and a move m, returns the configuration obtained by
playing the move m from configuration c. The function do_move should not be called on final configura-
tions.

2(http://en.wikipedia.org/wiki/Nim)
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Figure 1: The complete minimax tree for the Min game on the sequence 20, 17, 24,−30, 27.

3. Add a pre-condition to the contract of function do_move to forbid calling it on final configurations.
Complete the body of that function according to the rules of the Min game.

4. The program config0 is a simple test for your definitions. You can run it using the Why3 interpreter,
using command why3 execute min_game.mlw --use MinGame "config0 ()". Alternatively, you
can use the command make tests from the given Makefile.

2 Search for Optimal Moves: Generic Approach

In this section, we are interested in specifying and proving programs for searching optimal strategies for
a two-player game, in a way that is abstract with respect to the game. In particular, the specifications and
definitions of functions below should use only the type config and the functions legal_moves and do_move,
and never the items specific to Min game, such as the constructors PickOne and PickTwo for moves, or the
fields of the config type except the turn field.

2.1 Tree of Moves, Minimax Values, and Optimal Strategies

Given a configuration in a two-player game, we can draw the set of all reachable configurations as a tree.
Figure 1 shows the game tree of the Min game associated with our sample sequence (20, 17, 24,−30, 27).
Each box corresponds to a configuration, and contains the remaining numbers from the sequence at this
point in the game. Light-gray boxes indicate Alice’s turn to play, whereas dark-gray boxes indicate Bob’s
turn. The arrows correspond to the possible moves: pick one number for arrows going on the left, pick two
numbers for arrows going on the right.

Each box is decorated with two values, one on each side. The value on the left-hand side of each
box corresponds to the score of the corresponding configuration. These values can be computed from
top to bottom. The value on the right-hand side of each box corresponds to the minimax value of the
corresponding configuration: it is equal to the optimal final score that can be achieved when starting from
the configuration.

The minimax values can be computed from bottom to top. For a final configuration (i.e. a leaf of the
tree), the minimax value is equal to the score of the configuration. For a configuration at which Alice plays,
the minimax value is equal to the minimum of the minimax values of the two children boxes. Symmetrically,
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for a configuration at which Bob plays, the minimax value is equal to the maximum of the minimax values
of the two children boxes. Remind that, during the game, Alice’s goal is to minimize the score whereas
Bob’s goal is to maximize it.

The minimax value associated with the root of the tree corresponds to the final score obtained when
both players play optimally. The optimal sequence of moves can be viewed by going down the tree, playing
at each configuration the move that reaches a children box whose minimax value is equal to that of the
current configuration. For example, on Figure 1, the optimal moves correspond to the path made of the
boxes labelled −3. Alice takes one number from the sequence, then Bob takes one, then Alice takes the last
two.

Unlike the specific case of Min game, two-player games in general may allow for infinite games. For
this reason, the general definition of minimax values is parameterized by a depth parameter, which bounds
how far the tree should be developed. If, at the depth considered, the game has not terminated, then its
minimax value is defined to be the score of the current configuration. In the example, the minimax value of
the root at depth 2 is 3, and its minimax value at depth 3 or more is −3.

5. Complete the recursive definition of the logical function minimax that defines the minimax value of a
given configuration at a given depth. Prove its termination.

6. Test your definition of minimax with the Why3 interpreter, by running the test0 program. Test also
your definition by proving the test_minimax program. Comment on the results.

2.2 The Classical Alpha-Beta Algorithm

The alpha-beta algorithm is able to compute the minimax value of a configuration at a given depth without
necessarily exploring all the nodes in the tree. Given a configuration c and a depth d, and given two
bounds α and β, the algorithm computes the minimax value m of configuration c at depth d, within the
interval ]α, β[. This means that if the actual minimax value m is less than or equal to α, then returning
any value smaller than or equal to α is acceptable. Symmetrically, if m is greater than or equal to β, then
returning any value greater than or equal to β is acceptable. The alpha-beta algorithm can be described
using the following rules. When there are no legal moves in c then alpha_beta(α,β,c,d)=config_value(c).
Otherwise, when the legal moves are m1 and m2, then let v1 be the evaluation of the m1 move, that is
alpha_beta(α,β,do_move(c,m1),d− 1). Assuming the turn is to Alice:

• if v1 ≤ α we don’t need to explore the other branch and return v1

• Otherwise we can compute v2=alpha_beta(α,min(v1,β),do_move(c,m2),d − 1) and return the mini-
mum of v1 and v2

If it is to Bob to play, the rules are similar by exchanging the role of α and β and replacing minimum by
maximum.

The actual minimax value for a given configuration and a given depth can be computed by providing to
alpha_beta the arguments −∞ for α and +∞ for β. In the code given, the possibly-infinite values α and
β are represent as options, with None denoting the “infinite” values.

7. Give a formal specification to the alpha-beta function, specifying its result value in terms of the
minimax value m, distinguishing the case where m lies in the interval ]α, β[ and the case it does not.
Explain carefully why you pretend your specification is the one intended for that algorithm.

8. Complete the code of the alpha_beta function, and prove it correct with respect to your specification.

We are now interested in programming a function that effectively chooses the best move in a given
configuration. Assume m1 and m2 are the two possible moves. First, we compute (using alpha_beta) the
minimax value v of the configuration obtained when playing move m1. We then consider the configuration
c2 obtained from playing m2. If Alice is playing, then we call alpha_beta on c2 with α = v and β = v+1.
This suffices to decide which move is the best. Symmetrically, if Bob is playing, then we call alpha_beta
on c2 on a small interval sufficient to find the best move. The function best_move, given a configuration
and a depth, should return the best move from this configuration. The function should raise the exception
GameEnded if there are no legal moves.
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9. Give a specification for the function best_move.

10. Complete the implementation for best_move, and prove it correct with respect to your specification.

11. Test your program by running the interpreter on the program test_alpha_beta. Comment on the
results.

12. Test your program by compiling and running tests from the given file test_min_game.ml, using
make test_min_game. Comment on the results.

3 An Optimal Dynamic Algorithm for the Min Game

We now consider an efficient algorithm for computing optimal strategies for the Min game. We are no
longer generic with respect to an arbitrary two-player game. In this section, implementations and specifi-
cations will refer directly to the sequence of numbers associated with the game.

3.1 Independence with Respect to Past Moves

An important property of the game of Min is that, for any given configuration, the best move depends only
on the sequence of numbers remaining to take; it does not depend on the player in turn, nor on the scores
accumulated so far. This property is indeed a consequence of a property of the minimax: the minimax value
of a configuration c at some depth d is equal to the score of the configuration c plus the minimax value of
the same configuration with the score set to 0.

13. State the property above on minimax as a lemma, under the form of a lemma function
minimax_independence with an appropriate contract. Prove this lemma.

3.2 Dynamic Programming Algorithm

The property above leads to an efficient dynamic programming algorithm for computing optimal scores.
Let s be the initial sequence and n be its length. We build an array a of size n + 1, such that a[i] stores
the best score that the player in turn can obtain when playing on the subsequence of s starting at index i.
The table a can easily be filled backwards, using the following rules. For terminal configurations, we let
a[n − 1] = a[n] = 0 since no more moves can be done. Otherwise, a[i] can be expressed as a simple
formula, to be determined, depending on a[i+ 1], a[i+ 2], s[i] and s[i+ 1].

14. Propose a formula relating a[i] to a[i+ 1], a[i+ 2], s[i] and s[i+ 1].

15. Implement the algorithm described above as a function called dynamic, which takes as argument
the initial sequence and returns the optimal score, i.e. the value a[0]. Test your program by run-
ning the test function with the interpreter. Additionally, you can test your program by running
make test_min_game. Comment on the results.

16. Complete the definition of the predicate dynamic_inv relating, for any valid index i, the values a[i]
with the minimax value of any configuration whose current index is i.

17. Complete the post-condition of the program dynamic, stating that the return value is the same as the
minimax value of the initial configuration associated with the sequence s. Prove the program.

18. Implement and prove correct an optimized version dynamic_opt of the previous program, with a code
that do not allocate an array whose size is linear in function of the size of the input stack, but only
uses a constant memory space. The input array s should not be modified.

4 Conclusions

Don’t forget to end your report with a conclusion that summarizes your achievements, explain the issues
you couldn’t solve if any, and comment about what you learned when doing this project.
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